NAIS: A Calibrated Immune Inspired Algorithm to Solve Binary Constraint Satisfaction Problems

  • Marcos Zuñiga
  • María-Cristina Riff
  • Elizabeth Montero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4628)


We propose in this paper an artificial immune system to solve CSPs. The algorithm has been designed following the framework proposed by de Castro and Timmis. We have calibrated our algorithm using Relevance Estimation and Value Calibration (REVAC), that is a new technique, recently introduced to find the parameter values for evolutionary algorithms. The tests were carried out using random generated binary constraint satisfaction problems on the transition phase where are the hardest problems. The algorithm shown to be able to find quickly good quality solutions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)zbMATHGoogle Scholar
  2. 2.
    de Castro, L.N., von Zuben, F.J.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions On Evolutionary Computing 6(3), 239–251 (2002)CrossRefGoogle Scholar
  3. 3.
    Dasgupta, D.: Artificial Immune Systems And Their Applications. Springer, Heidelberg (2000)Google Scholar
  4. 4.
    Dozier, G., Bowen, J., Homaifar, A.: Solving Constraint Satisfaction Problems Using Hybrid Evolutionary Search. IEEE Transactions on Evolutionary Computation 2(1), 23–33 (1998)CrossRefGoogle Scholar
  5. 5.
    Smith, B., Dyer, M.E.: Locating the phase transition in constraint satisfaction problems. Artificial Intelligence 81, 155–181 (1996)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Timmis, J., Neal, M.: Investigating the Evolution and Stability of a Resource Limited Artificial Immune System. In: Proceedings of the IEEE Brazilian Symposium on Artificial Neural Networks, pp. 84–89 (2000)Google Scholar
  7. 7.
    Cheeseman, P., Kanefsky, B., Taylor, W.: Where the Really Hard Problems Are. In: Proceedings of IJCAI-91, pp. 163–169 (1991)Google Scholar
  8. 8.
    Eiben, A.E., van Hemert, J.I., Marchiori, E., Steenbeek, A.G.: Solving Binary Constraint Satisfaction Problems using Evolutionary Algorithms with an Adaptive Fitness Function. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 196–205. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Mackworth, A.K.: Consistency in network of relations. Artificial Intelligence 8, 99–118 (1977)zbMATHCrossRefGoogle Scholar
  10. 10.
    Marchiori, E.: Combining Constraint Processing and Genetic Algorithms for Constraint Satisfaction Problems. In: ICGA 1997. Proceedings of the 7th International Conference on Genetic Algorithms (1997)Google Scholar
  11. 11.
    Riff, M.-C.: A network-based adaptive evolutionary algorithm for CSP. In: The book Metaheuristics: Advances and Trends in Local Search Paradigms for Optimisation, vol. 22, pp. 325–339. Kluwer Academic Publisher, Boston, MA (1998)Google Scholar
  12. 12.
    Tsang, E.P.K., Wang, C.J., Davenport, A., Voudouris, C., Lau, T.L.: A family of stochastic methods for constraint satisfaction and optimization. In: PACLP. Proceedings of the 1st International Conference on The Practical Application of Constraint Technologies and Logic Programming, London, pp. 359–383 (1999)Google Scholar
  13. 13.
    Solnon, C.: Ants can solve Constraint Satisfaction Problems. IEEE Transactions on Evolutionary Computation 6(4), 347–357 (2002)CrossRefGoogle Scholar
  14. 14.
    Craenen, B., Eiben, A.E., van Hemert, J.I.: Comparing Evolutionary Algorithms on Binary Constraint Satisfaction Problems. IEEE Transactions on Evolutionary Computation 7(5), 424–444 (2003)CrossRefGoogle Scholar
  15. 15.
    Nannen, V., Eiben, A.E.: Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters. In: IJCAI. Proceedings of the Joint International Conference for Artificial Intelligence, pp. 975–980 (2007)Google Scholar
  16. 16.
    Minton, S., Johnston, M., Philips, A., Laird, P.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence 58, 161–205 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  18. 18.
    Garret, S.: Parameter-free adaptive clonal selection. IEEE Congress on Evolutionary Computation (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marcos Zuñiga
    • 1
  • María-Cristina Riff
    • 2
  • Elizabeth Montero
    • 2
  1. 1.Projet ORION, INRIA Sophia-Antipolis, NiceFrance
  2. 2.Department of Computer Science, Universidad Técnica Federico Santa María, ValparaísoChile

Personalised recommendations