Bankruptcy Prediction Using Artificial Immune Systems

  • Rohit Singh
  • Raghu Nandan Sengupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4628)


In this paper we articulate the idea of utilizing Artificial Immune System (AIS) for the prediction of bankruptcy of companies. Our proposed AIS model considers the financial ratios as input parameters. The novelty of our algorithms is their hybrid nature, where we use modified Negative Selection, Positive Selection and the Clonal Selection Algorithms adopted from Human Immune System. Finally we compare our proposed models with a few existing statistical and mathematical sickness prediction methods.


immune system artificial immune system positive selection negative selection clonal selection accounting variables bankruptcy sickness prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, E.I.: Financial Ratios, Discriminant Analysis and Prediction of Corporate Bankruptcy. Journal of Finance 23, 189–209 (1968)Google Scholar
  2. 2.
    Altman, E.I., Haldeman, R.G., Narayanan, P.: ZETATM Analysis: A New Model to identify Bankruptcy Risk of Corporations. Journal of Banking and Finance 1, 29–54 (1977)CrossRefGoogle Scholar
  3. 3.
    Altman, E.I., Hatzell, J., Peck, M.: Emerging Markets Corporate Bonds: A Scoring System. Salomon Brothers, New York, USA (1997)Google Scholar
  4. 4.
    Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling (Natural Computing Series). Springer, New York (2006)Google Scholar
  5. 5.
    Boggess, L., Hamaker, J.S.: Non-Euclidean Distance Measures in AIRS, an Artificial Immune Classification System. Proceedings of the IEEE Congress on Evolutionary Computation 1, 1067–1073 (2004)Google Scholar
  6. 6.
    Caouette, J.B., Altman, E.I., Narayanan, P.: Managing credit risk. Wiley Frontiers in Finance. John Wiley & sons Inc., New York (1998)Google Scholar
  7. 7.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)zbMATHGoogle Scholar
  8. 8.
    de Castro, L.N., von Zuben, F.J.: The Clonal Selection Algorithm with Engineering Applications. In: Proceedings of GECCO 2000, pp. 36–37 (2000)Google Scholar
  9. 9.
    Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 202–212. IEEE Computer Society Press, Los Alamitos, CA (1994)Google Scholar
  10. 10.
    Griffin, J.M., Lemmon, M.L.: Book to Market Equity, Distress Risk and Stock Returns. Journal of Finance 57, 2317–2336 (2002)CrossRefGoogle Scholar
  11. 11.
    Gupta, L.C.: Financial Ratios for Monitoring Corporate Sickness: Towards a More Systematic Approach. Oxford University Press, Delhi (1983)Google Scholar
  12. 12.
    Matzinger, P.: Tolerance, Danger, and the Extended Family. Annual Reviews of Immunology 12, 991–1045 (1994)Google Scholar
  13. 13.
    Matzinger, P.: An Innate Sense of Danger. Seminars in Immunology 10, 399–415 (1998)CrossRefGoogle Scholar
  14. 14.
    Ohlson, J.: Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research 18, 109–131 (1980)CrossRefGoogle Scholar
  15. 15.
    Zavgren, C.V.: The Prediction of Corporate Failure, the State of the Art. Journal of Accounting Literature 2, 1–33 (1983)Google Scholar
  16. 16.
    Zmijewski, M.E.: Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research 22, 59–82 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rohit Singh
    • 1
  • Raghu Nandan Sengupta
    • 1
  1. 1.Department of Industrial and Managment Engineering, Indian Institute of Technology Kanpur, Kanpur – 208016India

Personalised recommendations