The Important and Diverse Roles of Antibodies in the Host Response to Borrelia Infections

  • T. J. LaRocca
  • J. L. Benach
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 319)


Antibodies are of critical importance in the host response to tick-borne Borrelia species that cause relapsing fever and Lyme disease. Recent studies on the role of various B cell subsets in the host response to Borrelia, complement-independent, bactericidal antibodies, and diagnostics led to this review that focuses on the array of functions that antibodies to Borrelia can perform.


Lyme Disease Borrelia Burgdorferi Lyme Borreliosis Lyme Arthritis Outer Surface Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Arthritis-related protein


C4b-binding protein


Central nervous system


Complement regulator acquiring surface protein


Cerebrospinal fluid


Decorin-binding protein


Downstream homology sequence


Days postinoculation


Enzyme-linked immunosorbent assay


Fragment antigen binding


Fragment crystallizable


Neonatal Fc receptor


Factor H-binding protein

FO B cells

Follicular B cells


Glycerophosphodiester phosphodiesterase


Human umbilical vein endothelial cells


Indirect immunofluorescence assay




Monoclonal antibody


Membrane attack complex

MZ B cells

Marginal zone B cells


Outer membrane


Outer surface protein


Single-chain variable fragment


Severe combined immunodeficiency


Treatment-resistant Lyme arthritis


Upstream homology sequence


Variable large protein


Vmp-like sequence, expressed


Variable major protein


Variable small protein


Weeks postinoculation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akin E, McHugh GL, Flavell RA, Fikrig E, Steere AC (1999) The immunoglobulin (IgG) antibody response to OspA and OspB correlates with severe and prolonged Lyme arthritis and the IgG response to P35 correlates with mild and brief arthritis. Infect Immun 67:173–181.PubMedGoogle Scholar
  2. Alaedini A, Latov N (2005) Antibodies against OspA epitopes ofBorrelia burgdorferi cross-react with neural tissue. J Neuroimmunol 159:192–195.PubMedCrossRefGoogle Scholar
  3. Alitalo A, Meri T, Lankinen H, Seppala I, Lahdenne P, Hefty PS, Akins D, Meri S (2002) Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J Immunol 169:3847–3853.PubMedGoogle Scholar
  4. Alitalo A, Meri T, Chen T, Lankinen H, Cheng ZZ, Jokiranta TS, Seppala IJ, Lahdenne P, Hefty PS, Akins DR, Meri S (2004) Lysine-dependent multipoint binding of theBorrelia burgdorferi virulence factor outer surface protein E to the C terminus of factor H. J Immunol 172:6195–6201.PubMedGoogle Scholar
  5. Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT, Leong JM (2003) The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J Immunol 170:3819–3827.PubMedGoogle Scholar
  6. Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, Gerstein RM (2004) B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21:379–390.PubMedCrossRefGoogle Scholar
  7. Anda P, Sanchez-Yebra W, del Mar Vitutia M, Perez Pastrana E, Rodriguez I, Miller NS, Backenson PB, Benach JL (1996) A newBorrelia species isolated from patients with relapsing fever in Spain. Lancet 348:162–165.PubMedCrossRefGoogle Scholar
  8. Anderson JF, Magnarelli LA, McAninch JB (1988) NewBorrelia burgdorferi antigenic variant isolated fromIxodes dammini from upstate New York. J Clin Microbiol 26:2209–2212.PubMedGoogle Scholar
  9. Anderson JF, Magnarelli LA, LeFebvre RB, Andreadis TG, McAninch JB, Perng GC, Johnson RC (1989) Antigenically variable Borrelia burgdorferi isolated from cottontail rabbits andIxodes dentatus in rural and urban areas. J Clin Microbiol 27:13–20.PubMedGoogle Scholar
  10. Andersson M, Nordstrand A, Shamaei-Tousi A, Jansson A, Bergstrom S, Guo BP (2007) In situ immune response in brain and kidney during early relapsing fever borreliosis. J Neuroimmunol 183:26–32.PubMedCrossRefGoogle Scholar
  11. Anderton JM, Tokarz R, Thill CD, Kuhlow CJ, Brooks CS, Akins DR, Katona LI, Benach JL (2004) Whole-genome DNA array analysis of the response ofBorrelia burgdorferi to a bactericidal monoclonal antibody. Infect Immun 72:2035–2044.PubMedCrossRefGoogle Scholar
  12. Anguita J, Rincon M, Samanta S, Barthold SW, Flavell RA, Fikrig E (1998) Borrelia burgdorferi-infected, interleukin-6-deficient mice have decreased Th2 responses and increased lyme arthritis. J Infect Dis 178:1512–1515.PubMedCrossRefGoogle Scholar
  13. Axford JS, Rees DH, Mageed RA, Wordsworth P, Alavi A, Steere AC (1999) Increased IgA rheumatoid factor and V(H) 1 associated cross reactive idiotype expression in patients with Lyme arthritis and neuroborreliosis. Ann Rheum Dis 58:757–761.PubMedCrossRefGoogle Scholar
  14. Aydintug MK, Gu Y, Philipp MT (1994)Borrelia burgdorferi antigens that are targeted by antibody-dependent, complement-mediated killing in the rhesus monkey. Infect Immun 62:4929–4937.PubMedGoogle Scholar
  15. Babior BM, Takeuchi C, Ruedi J, Gutierrez A, Wentworth P Jr (2003) Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci U S A 100:3031–3034.PubMedCrossRefGoogle Scholar
  16. Bacon RM, Biggerstaff BJ, Schriefer ME, Gilmore RD Jr, Philipp MT, Steere AC, Wormser GP, Marques AR, Johnson BJ (2003) Serodiagnosis of Lyme disease by kinetic enzyme-linked immunosorbent assay using recombinant VlsE1 or peptide antigens ofBorrelia burgdorferi compared with 2-tiered testing using whole-cell lysates. J Infect Dis 187:1187–1199.PubMedCrossRefGoogle Scholar
  17. Bacon RM, Pilgard MA, Johnson BJ, Raffel SJ, Schwan TG (2004) Glycerophosphodiester phosphodiesterase gene (glpQ) ofBorrelia lonestari identified as a target for differentiatingBorrelia species associated with hard ticks (Acari:Ixodidae). J Clin Microbiol 42:2326–2328.PubMedCrossRefGoogle Scholar
  18. Baig S, Olsson T, Link H (1989) Predominance ofBorrelia burgdorferi specific B cells in cerebrospinal fluid in neuroborreliosis. Lancet 2:71–74.PubMedCrossRefGoogle Scholar
  19. Baranton G, Postic D, Saint Girons I, Boerlin P, Piffaretti JC, Assous M, Grimont PA (1992) Delineation ofBorrelia burgdorferi sensu stricto,Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol 42:378–383.PubMedCrossRefGoogle Scholar
  20. Barbour AG (1990) Antigenic variation of a relapsing feverBorrelia species. Annu Rev Microbiol 44:155–171.PubMedCrossRefGoogle Scholar
  21. Barbour AG (1991) Molecular biology of antigenic variation in Lyme borreliosis and relapsing fever: a comparative analysis. Scand J Infect Dis Suppl 77:88–93.PubMedGoogle Scholar
  22. Barbour AG, Bundoc V (2001) In vitro and in vivo neutralization of the relapsing fever agentBorrelia hermsii with serotype-specific immunoglobulin M antibodies. Infect Immun 69:1009–1015.PubMedCrossRefGoogle Scholar
  23. Barbour AG, Hayes SF (1986) Biology ofBorrelia species. Microbiol Rev 50:381–400.PubMedGoogle Scholar
  24. Barbour AG, Tessier SL, Stoenner HG (1982) Variable major proteins of Borrellia hermsii. J Exp Med 156:1312–1324.PubMedCrossRefGoogle Scholar
  25. Barbour AG, Tessier SL, Todd WJ (1983) Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun 41:795–804.PubMedGoogle Scholar
  26. Barbour AG, Dai Q, Restrepo BI, Stoenner HG, Frank SA (2006) Pathogen escape from host immunity by a genome program for antigenic variation. Proc Natl Acad Sci U S A 103:18290–18295.PubMedCrossRefGoogle Scholar
  27. Barstad PA, Coligan JE, Raum MG, Barbour AG (1985) Variable major proteins ofBorrelia hermsii. Epitope mapping and partial sequence analysis of CNBr peptides. J Exp Med 161:1302–1314.PubMedCrossRefGoogle Scholar
  28. Barthold SW, Bockenstedt LK (1993) Passive immunizing activity of sera from mice infected with Borrelia burgdorferi. Infect Immun 61:4696–4702.PubMedGoogle Scholar
  29. Barthold SW, deSouza M, Feng S (1996) Serum-mediated resolution of Lyme arthritis in mice. Lab Invest 74:57–67.PubMedGoogle Scholar
  30. Barthold SW, Feng S, Bockenstedt LK, Fikrig E, Feen K (1997) Protective and arthritis-resolving activity in sera of mice infected with Borrelia burgdorferi. Clin Infect Dis 25 [Suppl 1]:S9–S17.CrossRefGoogle Scholar
  31. Barthold SW, Hodzic E, Tunev S, Feng S (2006) Antibody-mediated disease remission in the mouse model of lyme borreliosis. Infect Immun 74:4817–4825.PubMedCrossRefGoogle Scholar
  32. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J (2000) B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192:271–280.PubMedCrossRefGoogle Scholar
  33. Beck G, Habicht GS, Benach JL, Coleman JL (1985) Chemical and biologic characterization of a lipopolysaccharide extracted from the Lyme disease spirochete (Borrelia burgdorferi). J Infect Dis 152:108–117.PubMedGoogle Scholar
  34. Becker M, Bunikis J, Lade BD, Dunn JJ, Barbour AG, Lawson CL (2005) Structural investigation ofBorrelia burgdorferi OspB, a bactericidal Fab target. J Biol Chem 280:17363–17370.PubMedCrossRefGoogle Scholar
  35. Belperron AA, Dailey CM, Bockenstedt LK (2005) Infection-induced marginal zone B cell production ofBorrelia hermsii-specific antibody is impaired in the absence of CD1d. J Immunol 174:5681–5686.PubMedGoogle Scholar
  36. Ben-Menachem G, Kubler-Kielb J, Coxon B, Yergey A, Schneerson R (2003) A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci U S A 100:7913–7918.PubMedCrossRefGoogle Scholar
  37. Benach JL, Bosler EM, Hanrahan JP, Coleman JL, Habicht GS, Bast TF, Cameron DJ, Ziegler JL, Barbour AG, Burgdorfer W, Edelman R, Kaslow RA (1983) Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med 308:740–742.PubMedGoogle Scholar
  38. Benach JL, Fleit HB, Habicht GS, Coleman JL, Bosler EM, Lane BP (1984) Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor. J Infect Dis 150:497–507.PubMedGoogle Scholar
  39. Benach JL, Coleman JL, Golightly MG (1988) A murine IgM monoclonal antibody binds an antigenic determinant in outer surface protein A, an immunodominant basic protein of the Lyme disease spirochete. J Immunol 140:265–272.PubMedGoogle Scholar
  40. Bendelac A, Bonneville M, Kearney JF (2001) Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol 1:177–186.PubMedCrossRefGoogle Scholar
  41. Bergstrom S, Bundoc VG, Barbour AG (1989) Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia burgdorferi. Mol Microbiol 3:479–486.PubMedCrossRefGoogle Scholar
  42. Beuche W, Siever A, Felgenhauer K (1992) Specific antigen binding by activated cerebrospinal fluid B lymphocytes in acute neuroborreliosis. J Neurol 239:322–326.PubMedCrossRefGoogle Scholar
  43. Bockenstedt LK, Barthold S, Deponte K, Marcantonio N, Kantor FS (1993)Borrelia burgdorferi infection and immunity in mice deficient in the fifth component of complement. Infect Immun 61:2104–2107.PubMedGoogle Scholar
  44. Bockenstedt LK, Fikrig E, Barthold SW, Flavell RA, Kantor FS (1996) Identification of aBorrelia burgdorferi OspA T cell epitope that promotes anti-OspA IgG in mice. J Immunol 157:5496–5502.PubMedGoogle Scholar
  45. Bockenstedt LK, Hodzic E, Feng S, Bourrel KW, de Silva A, Montgomery RR, Fikrig E, Radolf JD, Barthold SW (1997)Borrelia burgdorferi strain-specific Osp C-mediated immunity in mice. Infect Immun 65:4661–4667.PubMedGoogle Scholar
  46. Bolz DD, Sundsbak RS, Ma Y, Akira S, Weis JH, Schwan TG, Weis JJ (2006) Dual role of MyD88 in rapid clearance of relapsing feverBorrelia spp. Infect Immun 74:6750–6760.PubMedCrossRefGoogle Scholar
  47. Brandt ME, Riley BS, Radolf JD, Norgard MV (1990) Immunogenic integral membrane proteins ofBorrelia burgdorferi are lipoproteins. Infect Immun 58:983–991.PubMedGoogle Scholar
  48. Brooks CS, Vuppala SR, Jett AM, Alitalo A, Meri S, Akins DR (2005) Complement regulator-acquiring surface protein 1 imparts resistance to human serum in Borrelia burgdorferi. J Immunol 175:3299–3308.PubMedGoogle Scholar
  49. Burgdorfer W, Gage KL (1986) Susceptibility of the black-legged tick, Ixodes scapularis, to the Lyme disease spirochete, Borrelia burgdorferi. Zentralbl Bakteriol Mikrobiol Hyg [A] 263:15–20.Google Scholar
  50. Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease-a tick-borne spirochetosis? Science 216:1317–1319.PubMedCrossRefGoogle Scholar
  51. Burman N, Bergstrom S, Restrepo BI, Barbour AG (1990) The variable antigens Vmp7 and Vmp21 of the relapsing fever bacteriumBorrelia hermsii are structurally analogous to the VSG proteins of the African trypanosome. Mol Microbiol 4:1715–1726.PubMedCrossRefGoogle Scholar
  52. Burroughs AL, Holdenried R (1944) Recovery of relapsing fever spirochetes fromOrnithodoros turicata (Duges), 1876, in California. J Bacteriol 48:609.PubMedGoogle Scholar
  53. Cadavid D, Thomas DD, Crawley R, Barbour AG (1994) Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J Exp Med 179:631–642.PubMedCrossRefGoogle Scholar
  54. Cadavid D, Pachner AR, Estanislao L, Patalapati R, Barbour AG (2001) Isogenic serotypes ofBorrelia turicatae show different localization in the brain and skin of mice. Infect Immun 69:3389–3397.PubMedCrossRefGoogle Scholar
  55. Cadavid D, Sondey M, Garcia E, Lawson CL (2006) Residual brain infection in relapsing-fever borreliosis. J Infect Dis 193:1451–1458.PubMedCrossRefGoogle Scholar
  56. Calabi O (1959) The presence of plasma inhibitors during the crisis phenomenon in experimental relapsing fever (Borrelia novyi). J Exp Med 110:811–825.PubMedCrossRefGoogle Scholar
  57. Callister SM, Schell RF, Lovrich SD (1991) Lyme disease assay which detects killed Borrelia burgdorferi. J Clin Microbiol 29:1773–1776.PubMedGoogle Scholar
  58. Callister SM, Schell RF, Case KL, Lovrich SD, Day SP (1993) Characterization of the borreliacidal antibody response toBorrelia burgdorferi in humans: a serodiagnostic test. J Infect Dis 167:158–164.PubMedGoogle Scholar
  59. Callister SM, Schell RF, Lim LC, Jobe DA, Case KL, Bryant GL, Molling PE (1994) Detection of borreliacidal antibodies by flow cytometry. An accurate, highly specific serodiagnostic test for Lyme disease. Arch Intern Med 154:1625–1632.PubMedCrossRefGoogle Scholar
  60. Callister SM, Jobe DA, Schell RF, Pavia CS, Lovrich SD (1996) Sensitivity and specificity of the borreliacidal-antibody test during early Lyme disease: a “gold standard”? Clin Diagn Lab Immunol 3:399–402.PubMedGoogle Scholar
  61. Canica MM, Nato F, du Merle L, Mazie JC, Baranton G, Postic D (1993) Monoclonal antibodies for identification ofBorrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis 25:441–448.PubMedCrossRefGoogle Scholar
  62. Carter CJ, Bergstrom S, Norris SJ, Barbour AG (1994) A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect Immun 62:2792–2799.PubMedGoogle Scholar
  63. Chen J, Field JA, Glickstein L, Molloy PJ, Huber BT, Steere AC (1999) Association of antibiotic treatment-resistant Lyme arthritis with T cell responses to dominant epitopes of outer surface protein A of Borrelia burgdorferi. Arthritis Rheum 42:1813–1822.PubMedCrossRefGoogle Scholar
  64. Coffey EM, Eveland WC (1967a) Experimental relapsing fever initiated byBorella hermsi. I. Identification of major serotypes by immunofluorescence. J Infect Dis 117:23–28.PubMedGoogle Scholar
  65. Coffey EM, Eveland WC (1967b) Experimental relapsing fever initiated byBorrelia hermsi. II. Sequential appearance of major serotypes in the rat. J Infect Dis 117:29–34.PubMedGoogle Scholar
  66. Coleman JL, Rogers RC, Benach JL (1992) Selection of an escape variant ofBorrelia burgdorferi by use of bactericidal monoclonal antibodies to OspB. Infect Immun 60:3098–3104.PubMedGoogle Scholar
  67. Coleman JL, Rogers RC, Rosa PA, Benach JL (1994) Variations in the ospB gene ofBorrelia burgdorferi result in differences in monoclonal antibody reactivity and in production of escape variants. Infect Immun 62:303–307.PubMedGoogle Scholar
  68. Connolly SE, Benach JL (2001) Cutting edge: the spirochetemia of murine relapsing fever is cleared by complement-independent bactericidal antibodies. J Immunol 167:3029–3032.PubMedGoogle Scholar
  69. Connolly SE, Benach JL (2005) The versatile roles of antibodies inBorrelia infections. Nat Rev Microbiol 3:411–420.PubMedCrossRefGoogle Scholar
  70. Connolly SE, Thanassi DG, Benach JL (2004) Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia. J Immunol 172:1191–1197.PubMedGoogle Scholar
  71. Cordes FS, Roversi P, Kraiczy P, Simon MM, Brade V, Jahraus O, Wallis R, Skerka C, Zipfel PF, Wallich R, Lea SM (2005) A novel fold for the factor H-binding protein BbCRASP-1 of Borrelia burgdorferi. Nat Struct Mol Biol 12:276–277.PubMedCrossRefGoogle Scholar
  72. Cordes FS, Kraiczy P, Roversi P, Simon MM, Brade V, Jahraus O, Wallis R, Goodstadt L, Ponting CP, Skerka C, Zipfel PF, Wallich R, Lea SM (2006) Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi. Int J Med Microbiol 296 [Suppl 40]:177–184.PubMedCrossRefGoogle Scholar
  73. Creson JR, Lim LC, Glowacki NJ, Callister SM, Schell RF (1996) Detection of anti-Borrelia burgdorferi antibody responses with the borreliacidal antibody test, indirect fluorescent-antibody assay performed by flow cytometry, and Western immunoblotting. Clin Diagn Lab Immunol 3:184–190.PubMedGoogle Scholar
  74. Croke CL, Munson EL, Lovrich SD, Christopherson JA, Remington MC, England DM, Callister SM, Schell RF (2000) Occurrence of severe destructive lyme arthritis in hamsters vaccinated with outer surface protein A and challenged with Borrelia burgdorferi. Infect Immun 68:658–663.PubMedCrossRefGoogle Scholar
  75. Crowley H, Alroy J, Sproule TJ, Roopenian D, Huber BT (2006) The MHC class I-related FcRn ameliorates murine Lyme arthritis. Int Immunol 18:409–414.PubMedCrossRefGoogle Scholar
  76. Cutler SJ, Moss J, Fukunaga M, Wright DJ, Fekade D, Warrell D (1997) Borrelia recurrentis characterization and comparison with relapsing-fever, Lyme-associated, and otherBorrelia spp. Int J Syst Bacteriol 47:958–968.PubMedCrossRefGoogle Scholar
  77. Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, Barbour AG (2006) Antigenic variation byBorrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol 60:1329–1343.PubMedCrossRefGoogle Scholar
  78. Dame TM, Orenzoff BL, Palmer LE, Furie MB (2007) IFN-{gamma} alters the response of borrelia burgdorferi-activated endothelium to favor chronic inflammation. J Immunol 178:1172–1179.PubMedGoogle Scholar
  79. Damman CJ, Eggers CH, Samuels DS, Oliver DB (2000) Characterization ofBorrelia burgdorferi BlyA and BlyB proteins: a prophage-encoded holin-like system. J Bacteriol 182:6791–6797.PubMedCrossRefGoogle Scholar
  80. Davidson MM, Chisholm SM, Wiseman AD, Joss AW, Ho-Yen DO (1996) Improved serodiagnosis of Lyme disease. Clin Mol Pathol 49:M80–M84.PubMedCrossRefGoogle Scholar
  81. Davis GE (1939) Relapsing fever:Ornithodoros hermsi a vector in Colorado. Public Health Report 54:2178–2180.Google Scholar
  82. Davis GE (1940) Ticks and relapsing fever in the United States. Public Health Report 55:2347–2351.Google Scholar
  83. de Silva AM, Telford SR 3rd, Brunet LR, Barthold SW, Fikrig E (1996)Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med 183:271–275.PubMedCrossRefGoogle Scholar
  84. de Silva AM, Zeidner NS, Zhang Y, Dolan MC, Piesman J, Fikrig E (1999) Influence of outer surface protein A antibody onBorrelia burgdorferi within feeding ticks. Infect Immun 67:30–35.PubMedGoogle Scholar
  85. Dressler F, Whalen JA, Reinhardt BN, Steere AC (1993) Western blotting in the serodiagnosis of Lyme disease. J Infect Dis 167:392–400.PubMedGoogle Scholar
  86. DuChateau BK, England DM, Callister SM, Lim LC, Lovrich SD, Schell RF (1996) Macrophages exposed toBorrelia burgdorferi induce Lyme arthritis in hamsters. Infect Immun 64:2540–2547.Google Scholar
  87. DuChateau BK, Jensen JR, England DM, Callister SM, Lovrich SD, Schell RF (1997) Macrophages and enriched populations of T lymphocytes interact synergistically for the induction of severe, destructive Lyme arthritis. Infect Immun 65:2829–2836.PubMedGoogle Scholar
  88. DuChateau BK, Munson EL, England DM, Lovrich SD, Callister SM, Jensen JR, Schell RF (1999) Macrophages interact with enriched populations of distinct T lymphocyte subsets for the induction of severe destructive Lyme arthritis. J Leukoc Biol 65:162–170.PubMedGoogle Scholar
  89. Dunne M, al-Ramadi BK, Barthold SW, Flavell RA, Fikrig E (1995) Oral vaccination with an attenuatedSalmonella typhimurium strain expressingBorrelia burgdorferi OspA prevents murine Lyme borreliosis. Infect Immun 63:1611–1614.PubMedGoogle Scholar
  90. Duray PH (1989) Clinical pathologic correlations of Lyme disease. Rev Infect Dis 11 [Suppl 6]:S1487–S1493.Google Scholar
  91. Embers ME, Wormser GP, Schwartz I, Martin DS, Philipp MT (2007)Borrelia burgdorferi spirochetes that harbor only a portion of the lp28–1 plasmid elicit antibody responses detectable with the C6 test for Lyme disease. Clin Vaccine Immunol 14:90–93.PubMedCrossRefGoogle Scholar
  92. Engstrom SM, Shoop E, Johnson RC (1995) Immunoblot interpretation criteria for serodiagnosis of early Lyme disease. J Clin Microbiol 33:419–427.PubMedGoogle Scholar
  93. Escudero R, Halluska ML, Backenson PB, Coleman JL, Benach JL (1997) Characterization of the physiological requirements for the bactericidal effects of a monoclonal antibody to OspB ofBorrelia burgdorferi by confocal microscopy. Infect Immun 65:1908–1915.PubMedGoogle Scholar
  94. Exner MM, Wu X, Blanco DR, Miller JN, Lovett MA (2000) Protection elicited by native outer membrane protein Oms66 (p66) against host-adaptedBorrelia burgdorferi: conformational nature of bactericidal epitopes. Infect Immun 68:2647–2654.PubMedCrossRefGoogle Scholar
  95. Fikrig E, Barthold SW, Kantor FS, Flavell RA (1990) Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science 250:553–536.PubMedCrossRefGoogle Scholar
  96. Fikrig E, Barthold SW, Kantor FS, Flavell RA (1991) Protection of mice from Lyme borreliosis by oral vaccination withEscherichia coli expressing OspA. J Infect Dis 164:1224–1227.PubMedGoogle Scholar
  97. Fikrig E, Barthold SW, Kantor FS, Flavell RA (1992a) Long-term protection of mice from Lyme disease by vaccination with OspA. Infect Immun 60:773–777.PubMedGoogle Scholar
  98. Fikrig E, Telford SR 3rd, Barthold SW, Kantor FS, Spielman A, Flavell RA (1992b) Elimination ofBorrelia burgdorferi from vector ticks feeding on OspA-immunized mice. Proc Natl Acad Sci U S A 89:5418–5421.PubMedCrossRefGoogle Scholar
  99. Fikrig E, Berland R, Chen M, Williams S, Sigal LH, Flavell RA (1993) Serologic response to theBorrelia burgdorferi flagellin demonstrates an epitope common to a neuroblastoma cell line. Proc Natl Acad Sci U S A 90:183–187.PubMedCrossRefGoogle Scholar
  100. Fikrig E, Bockenstedt LK, Barthold SW, Chen M, Tao H, Ali-Salaam P, Telford SR, Flavell RA (1994) Sera from patients with chronic Lyme disease protect mice from Lyme borreliosis. J Infect Dis 169:568–574.PubMedGoogle Scholar
  101. Fikrig E, Barthold SW, Chen M, Grewal IS, Craft J, Flavell RA (1996) Protective antibodies in murine Lyme disease arise independently of CD40 ligand. J Immunol 157:1–3.PubMedGoogle Scholar
  102. Fikrig E, Barthold SW, Chen M, Chang CH, Flavell RA (1997) Protective antibodies develop, and murine Lyme arthritis regresses, in the absence of MHC class II and CD4+ T cells. J Immunol 159:5682–5686.PubMedGoogle Scholar
  103. Filgueira L, Nestle FO, Rittig M, Joller HI, Groscurth P (1996) Human dendritic cells phagocytose and process Borrelia burgdorferi. J Immunol 157:2998–3005.PubMedGoogle Scholar
  104. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fuji C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586.Google Scholar
  105. Frey AB, Rao TD (1995) Single exposure of mice toBorrelia burgdorferi elicits immunoglobulin G antibodies characteristic of secondary immune response without production of interleukin-4 by immune T cells. Infect Immun 63:2596–2603.PubMedGoogle Scholar
  106. Galli G, Nuti S, Tavarini S, Galli-Stampino L, De Lalla C, Casorati G, Dellabona P, Abrignani S (2003) Innate immune responses support adaptive immunity: NKT cells induce B cell activation. Vaccine 21 [Suppl 2]:S48–S54.CrossRefGoogle Scholar
  107. Garcia-Monco JC, Benach JL (1995) Lyme neuroborreliosis. Ann Neurol 37:691–702.PubMedCrossRefGoogle Scholar
  108. Garcia-Monco JC, Benach JL (1997) Mechanisms of injury in Lyme neuroborreliosis. Semin Neurol 17:57–62.PubMedCrossRefGoogle Scholar
  109. Garcia Monco JC, Wheeler CM, Benach JL, Furie RA, Lukehart SA, Stanek G, Steere AC (1993) Reactivity of neuroborreliosis patients (Lyme disease) to cardiolipin and gangliosides. J Neurol Sci 117:206–214.PubMedCrossRefGoogle Scholar
  110. Garcia-Monco JC, Seidman RJ, Benach JL (1995) Experimental immunization withBorrelia burgdorferi induces development of antibodies to gangliosides. Infect Immun 63:4130–4137.PubMedGoogle Scholar
  111. Garcia-Monco JC, Miller NS, Backenson PB, Anda P, Benach JL (1997) A mouse model of Borrelia meningitis after intradermal injection. J Infect Dis 175:1243–1245.PubMedCrossRefGoogle Scholar
  112. Gergel EI, Furie MB (2001) Activation of endothelium byBorrelia burgdorferi in vitro enhances transmigration of specific subsets of T lymphocytes. Infect Immun 69:2190–2197.PubMedCrossRefGoogle Scholar
  113. Gergel EI, Furie MB (2004) Populations of human T lymphocytes that traverse the vascular endothelium stimulated byBorrelia burgdorferi are enriched with cells that secrete gamma interferon. Infect Immun 72:1530–1536.PubMedCrossRefGoogle Scholar
  114. Ghosh S, Steere AC, Stollar BD, Huber BT (2005) In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J Immunol 174:2860–2869.PubMedGoogle Scholar
  115. Ghosh S, Seward R, Costello CE, Stollar BD, Huber BT (2006) Autoantibodies from synovial lesions in chronic, antibiotic treatment-resistant Lyme arthritis bind cytokeratin-10. J Immunol 177:2486–2494.PubMedGoogle Scholar
  116. Gipson CL, de Silva AM (2005) Interactions of OspA monoclonal antibody C3.78 withBorrelia burgdorferi within ticks. Infect Immun 73:1644–1647.PubMedCrossRefGoogle Scholar
  117. Golightly MG (1997) Lyme borreliosis: laboratory considerations. Semin Neurol 17:11–17.PubMedCrossRefGoogle Scholar
  118. Gross DM, Forsthuber T, Tary-Lehmann M, Etling C, Ito K, Nagy ZA, Field JA, Steere AC, Huber BT (1998) Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 281:703–706.PubMedCrossRefGoogle Scholar
  119. Guerau-de-Arellano M, Huber BT (2002) Development of autoimmunity in Lyme arthritis. Curr Opin Rheumatol 14:388–393.PubMedCrossRefGoogle Scholar
  120. Guinamard R, Okigaki M, Schlessinger J, Ravetch JV (2000) Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol 1:31–36.PubMedCrossRefGoogle Scholar
  121. Haas KM, Poe JC, Steeber DA, Tedder TF (2005) B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23:7–18.PubMedCrossRefGoogle Scholar
  122. Halperin JJ (2003) Lyme disease and the peripheral nervous system. Muscle Nerve 28:133–143.PubMedCrossRefGoogle Scholar
  123. Halperin JJ (2005) Central nervous system Lyme disease. Curr Neurol Neurosci Rep 5:446–452.PubMedCrossRefGoogle Scholar
  124. Halperin JJ, Golightly M (1992) Lyme borreliosis in Bell’s palsy. Long Island Neuroborreliosis Collaborative Study Group. Neurology 42:1268–1270.PubMedGoogle Scholar
  125. Halperin JJ, Little BW, Coyle PK, Dattwyler RJ (1987) Lyme disease: cause of a treatable peripheral neuropathy. Neurology 37:1700–1706.PubMedGoogle Scholar
  126. Halperin JJ, Luft BJ, Anand AK, Roque CT, Alvarez O, Volkman DJ, Dattwyler RJ (1989) Lyme neuroborreliosis: central nervous system manifestations. Neurology 39:753–759.PubMedGoogle Scholar
  127. Halperin JJ, Volkman DJ, Wu P (1991) Central nervous system abnormalities in Lyme neuroborreliosis. Neurology 41:1571–1582.PubMedGoogle Scholar
  128. Hannier S, Liversidge J, Sternberg JM, Bowman AS (2004) Characterization of the B-cell inhibitory protein factor inIxodes ricinus tick saliva: a potential role in enhancedBorrelia burgdorferi transmission. Immunology 113:401–408.PubMedCrossRefGoogle Scholar
  129. Hansen K, Cruz M, Link H (1990) OligoclonalBorrelia burgdorferi-specific IgG antibodies in cerebrospinal fluid in Lyme neuroborreliosis. J Infect Dis 161:1194–1202.PubMedGoogle Scholar
  130. Hardin JA, Steere AC, Malawista SE (1979a) Immune complexes and the evolution of Lyme arthritis. Dissemination and localization of abnormal C1q binding activity. N Engl J Med 301:1358–1363.PubMedCrossRefGoogle Scholar
  131. Hardin JA, Walker LC, Steere AC, Trumble TC, Tung KS, Williams RC Jr, Ruddy S, Malawista SE (1979b) Circulating immune complexes in Lyme arthritis. Detection by the 125I–C1q binding, C1q solid phase, and Raji cell assays. J Clin Invest 63:468–477.PubMedCrossRefGoogle Scholar
  132. Hardin JA, Steere AC, Malawista SE (1984) The pathogenesis of arthritis in Lyme disease: humoral immune responses and the role of intra-articular immune complexes. Yale J Biol Med 57:589–593.PubMedGoogle Scholar
  133. Hartmann K, Corvey C, Skerka C, Kirschfink M, Karas M, Brade V, Miller JC, Stevenson B, Wallich R, Zipfel PF, Kraiczy P (2006) Functional characterization of BbCRASP-2, a distinct outer membrane protein ofBorrelia burgdorferi that binds host complement regulators factor H and FHL-1. Mol Microbiol 61:1220–1236.PubMedCrossRefGoogle Scholar
  134. Hayes SF, Burgdorfer W, Barbour AG (1983) Bacteriophage in theIxodes dammini spirochete, etiological agent of Lyme disease. J Bacteriol 154:1436–1439.PubMedGoogle Scholar
  135. Hellwage J, Meri T, Heikkila T, Alitalo A, Panelius J, Lahdenne P, Seppala IJ, Meri S (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276:8427–8435.PubMedCrossRefGoogle Scholar
  136. Hodzic E, Tunev S, Feng S, Freet KJ, Barthold SW (2005) Immunoglobulin-regulated expression ofBorrelia burgdorferi outer surface protein A in vivo. Infect Immun 73:3313–3321.PubMedCrossRefGoogle Scholar
  137. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136.PubMedCrossRefGoogle Scholar
  138. Honarvar N, Schaible UE, Galanos C, Wallich R, Simon MM (1994) A 14, 000 MW lipoprotein and a glycolipid-like structure ofBorrelia burgdorferi induce proliferation and immunoglobulin production in mouse B cells at high frequencies. Immunology 82:389–396.PubMedGoogle Scholar
  139. Horwitz MA (1984) Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36:27–33.PubMedCrossRefGoogle Scholar
  140. Hovis KM, McDowell JV, Griffin L, Marconi RT (2004) Identification and characterization of a linear-plasmid-encoded factor H-binding protein (FhbA) of the relapsing fever spirochete Borrelia hermsii. J Bacteriol 186:2612–2618.PubMedCrossRefGoogle Scholar
  141. Hovis KM, Jones JP, Sadlon T, Raval G, Gordon DL, Marconi RT (2006a) Molecular analyses of the interaction ofBorrelia hermsii FhbA with the complement regulatory proteins factor H and factor H-like protein 1. Infect Immun 74:2007–2014.PubMedCrossRefGoogle Scholar
  142. Hovis KM, Schriefer ME, Bahlani S, Marconi RT (2006b) Immunological and molecular analyses of theBorrelia hermsii factor H and factor H-like protein 1 binding protein, FhbA: demonstration of its utility as a diagnostic marker and epidemiological tool for tick-borne relapsing fever. Infect Immun 74:4519–4529.PubMedCrossRefGoogle Scholar
  143. Hovis KM, Tran E, Sundy CM, Buckles E, McDowell JV, Marconi RT (2006c) Selective binding ofBorrelia burgdorferi OspE paralogs to factor H and serum proteins from diverse animals: possible expansion of the role of OspE in Lyme disease pathogenesis. Infect Immun 74:1967–1972.PubMedCrossRefGoogle Scholar
  144. Howe TR, Mayer LW, Barbour AG (1985) A single recombinant plasmid expressing two major outer surface proteins of the Lyme disease spirochete. Science 227:645–646.PubMedCrossRefGoogle Scholar
  145. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85:5879–5883.PubMedCrossRefGoogle Scholar
  146. Isakson PC, Pure E, Vitetta ES, Krammer PH (1982) T cell-derived B cell differentiation factor(s). Effect on the isotype switch of murine B cells. J Exp Med 155:734–748.PubMedCrossRefGoogle Scholar
  147. Janeway C, Travers P, Walport M, Shlomchik M (2001) Immunobiology: the immune system in health and disease. Garland Publishing, New York.Google Scholar
  148. Jansson C, Carlsson SA, Granlund H, Wahlberg P, Nyman D (2005) Analysis ofBorrelia burgdorferi IgG antibodies with a combination of IgG ELISA and VlsE C6 peptide ELISA. Clin Microbiol Infect 11:147–150.PubMedCrossRefGoogle Scholar
  149. Jensen JR, Du Chateau BK, Munson EL, Callister SM, Schell RF (1998) Inhibition of the production of anti-OspA borreliacidal antibody with T cells from hamsters vaccinated against Borrelia burgdorferi. Infect Immun 66:1507–1512.PubMedGoogle Scholar
  150. Johnson BJ, Robbins KE, Bailey RE, Cao BL, Sviat SL, Craven RB, Mayer LW, Dennis DT (1996) Serodiagnosis of Lyme disease: accuracy of a two-step approach using a flagella-based ELISA and immunoblotting. J Infect Dis 174:346–353.PubMedGoogle Scholar
  151. Johnson RC (1977) The spirochetes. Annu Rev Microbiol 31:89–106.PubMedCrossRefGoogle Scholar
  152. Johnson RC, Kodner C, Russell M (1986) Passive immunization of hamsters against experimental infection with the Lyme disease spirochete. Infect Immun 53:713–714.PubMedGoogle Scholar
  153. Kaiser R (1995) Intrathecal immune response in neuroborreliosis: importance of cross-reactive antibodies. Zentralbl Bakteriol 282:303–314.PubMedGoogle Scholar
  154. Kaiser R, Rauer S (1998) Analysis of the intrathecal immune response in neuroborreliosis to a sonicate antigen and three recombinant antigens ofBorrelia burgdorferi sensu stricto. Eur J Clin Microbiol Infect Dis 17:159–166.PubMedGoogle Scholar
  155. Kalish RA, Leong JM, Steere AC (1993) Association of treatment-resistant chronic Lyme arthritis with HLA-DR4 and antibody reactivity to OspA and OspB of Borrelia burgdorferi. Infect Immun 61:2774–2779.PubMedGoogle Scholar
  156. Kang I, Barthold SW, Persing DH, Bockenstedt LK (1997) T-helper-cell cytokines in the early evolution of murine Lyme arthritis. Infect Immun 65:3107–3111.PubMedGoogle Scholar
  157. Karlsson M, Mollegard I, Stiernstedt G, Wretlind B (1989) Comparison of Western blot and enzyme-linked immunosorbent assay for diagnosis of Lyme borreliosis. Eur J Clin Microbiol Infect Dis 8:871–877.PubMedCrossRefGoogle Scholar
  158. Katona LI, Ayalew S, Coleman JL, Benach JL (2000) A bactericidal monoclonal antibody elicits a change in its antigen, OspB ofBorrelia burgdorferi, that can be detected by limited proteolysis. J Immunol 164:1425–1431.PubMedGoogle Scholar
  159. Kawabata H, Masuzawa T, Yanagihara Y (1993) Genomic analysis ofBorrelia japonica sp. nov. isolated fromIxodes ovatus in Japan. Microbiol Immunol 37:843–848.PubMedGoogle Scholar
  160. Keane-Myers A, Nickell SP (1995a) Role of IL-4 and IFN-gamma in modulation of immunity toBorrelia burgdorferi in mice. J Immunol 155:2020–2028.PubMedGoogle Scholar
  161. Keane-Myers A, Nickell SP (1995b) T cell subset-dependent modulation of immunity toBorrelia burgdorferi in mice. J Immunol 154:1770–1776.PubMedGoogle Scholar
  162. Keane-Myers A, Maliszewski CR, Finkelman FD, Nickell SP (1996) Recombinant IL-4 treatment augments resistance toBorrelia burgdorferi infections in both normal susceptible and antibody-deficient susceptible mice. J Immunol 156:2488–2494.PubMedGoogle Scholar
  163. Kochi SK, Johnson RC (1988) Role of immunoglobulin G in killing ofBorrelia burgdorferi by the classical complement pathway. Infect Immun 56:314–321.PubMedGoogle Scholar
  164. Kochi SK, Johnson RC, Dalmasso AP (1991) Complement-mediated killing of the Lyme disease spirocheteBorrelia burgdorferi. Role of antibody in formation of an effective membrane attack complex. J Immunol 146:3964–3970.PubMedGoogle Scholar
  165. Kochi SK, Johnson RC, Dalmasso AP (1993) Facilitation of complement-dependent killing of the Lyme disease spirochete,Borrelia burgdorferi, by specific immunoglobulin G Fab antibody fragments. Infect Immun 61:2532–2536.PubMedGoogle Scholar
  166. Koide S, Yang X, Huang X, Dunn JJ, Luft BJ (2005) Structure-based design of a second-generation Lyme disease vaccine based on a C-terminal fragment ofBorrelia burgdorferi OspA. J Mol Biol 350:290–299.PubMedCrossRefGoogle Scholar
  167. Kraiczy P, Skerka C, Brade V, Zipfel PF (2001a) Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infect Immun 69:7800–7809.PubMedCrossRefGoogle Scholar
  168. Kraiczy P, Skerka C, Kirschfink M, Brade V, Zipfel PF (2001b) Immune evasion ofBorrelia burgdorferi by acquisition of human complement regulators FHL-1/reconectin and Factor H. Eur J Immunol 31:1674–1684.PubMedCrossRefGoogle Scholar
  169. Kraiczy P, Skerka C, Kirschfink M, Zipfel PF, Brade V (2001c) Mechanism of complement resistance of pathogenicBorrelia burgdorferi isolates. Int Immunopharmacol 1:393–401.PubMedCrossRefGoogle Scholar
  170. Kraiczy P, Hellwage J, Skerka C, Kirschfink M, Brade V, Zipfel PF, Wallich R (2003) Immune evasion ofBorrelia burgdorferi: mapping of a complement-inhibitor factor H-binding site of BbCRASP-3, a novel member of the Erp protein family. Eur J Immunol 33:697–707.PubMedCrossRefGoogle Scholar
  171. Kraiczy P, Hellwage J, Skerka C, Becker H, Kirschfink M, Simon MM, Brade V, Zipfel PF, Wallich R (2004) Complement resistance ofBorrelia burgdorferi correlates with the expression of BbCRASP-1, a novel linear plasmid-encoded surface protein that interacts with human factor H and FHL-1 and is unrelated to Erp proteins. J Biol Chem 279:2421–2429.PubMedCrossRefGoogle Scholar
  172. Kumararatne DS, MacLennan IC (1981) Cells of the marginal zone of the spleen are lymphocytes derived from recirculating precursors. Eur J Immunol 11:865–869.PubMedCrossRefGoogle Scholar
  173. Kumararatne DS, MacLennan IC (1982) The origin of marginal-zone cells. Adv Exp Med Biol 149:83–90.PubMedGoogle Scholar
  174. Kumararatne DS, Bazin H, MacLennan IC (1981) Marginal zones: the major B cell compartment of rat spleens. Eur J Immunol 11:858–864.PubMedCrossRefGoogle Scholar
  175. Lawrenz MB, Hardham JM, Owens RT, Nowakowski J, Steere AC, Wormser GP, Norris SJ (1999) Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi. J Clin Microbiol 37:3997–4004.PubMedGoogle Scholar
  176. Le Fleche A, Postic D, Girardet K, Peter O, Baranton G (1997) Characterization ofBorrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 47:921–925.PubMedCrossRefGoogle Scholar
  177. Ledue TB, Collins MF, Craig WY (1996) New laboratory guidelines for serologic diagnosis of Lyme disease: evaluation of the two-test protocol. J Clin Microbiol 34:2343–2350.PubMedGoogle Scholar
  178. Li L, Narayan K, Pak E, Pachner AR (2006) Intrathecal antibody production in a mouse model of Lyme neuroborreliosis. J Neuroimmunol 173:56–68.PubMedCrossRefGoogle Scholar
  179. Liang FT, Philipp MT (1999) Analysis of antibody response to invariable regions of VlsE, the variable surface antigen of Borrelia burgdorferi. Infect Immun 67:6702–6706.PubMedGoogle Scholar
  180. Liang FT, Alvarez AL, Gu Y, Nowling JM, Ramamoorthy R, Philipp MT (1999a) An immunodominant conserved region within the variable domain of VlsE, the variable surface antigen of Borrelia burgdorferi. J Immunol 163:5566–5573.PubMedGoogle Scholar
  181. Liang FT, Steere AC, Marques AR, Johnson BJ, Miller JN, Philipp MT (1999b) Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region ofBorrelia burgdorferi vlsE. J Clin Microbiol 37:3990–3996.PubMedGoogle Scholar
  182. Liang FT, Aberer E, Cinco M, Gern L, Hu CM, Lobet YN, Ruscio M, Voet PE Jr, Weynants VE, Philipp MT (2000a) Antigenic conservation of an immunodominant invariable region of the VlsE lipoprotein among European pathogenic genospecies ofBorrelia burgdorferi SL. J Infect Dis 182:1455–1462.PubMedCrossRefGoogle Scholar
  183. Liang FT, Jacobson RH, Straubinger RK, Grooters A, Philipp MT (2000b) Characterization of aBorrelia burgdorferi VlsE invariable region useful in canine Lyme disease serodiagnosis by enzyme-linked immunosorbent assay. J Clin Microbiol 38:4160–4166.PubMedGoogle Scholar
  184. Liang FT, Jacobs MB, Bowers LC, Philipp MT (2002) An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J Exp Med 195:415–422.PubMedCrossRefGoogle Scholar
  185. Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E (2004)Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 72:5759–5767.PubMedCrossRefGoogle Scholar
  186. Linder S, Heimerl C, Fingerle V, Aepfelbacher M, Wilske B (2001) Coiling phagocytosis ofBorrelia burgdorferi by primary human macrophages is controlled by CDC42Hs and Rac1 and involves recruitment of Wiskott-Aldrich syndrome protein and Arp2/3 complex. Infect Immun 69:1739–1746.PubMedCrossRefGoogle Scholar
  187. Lovrich SD, Callister SM, Schmitz JL, Alder JD, Schell RF (1991) Borreliacidal activity of sera from hamsters infected with the Lyme disease spirochete. Infect Immun 59:2522–2528.PubMedGoogle Scholar
  188. Lovrich SD, Jobe DA, Schell RF, Callister SM (2005) Borreliacidal OspC antibodies specific for a highly conserved epitope are immunodominant in human lyme disease and do not occur in mice or hamsters. Clin Diagn Lab Immunol 12:746–751.PubMedGoogle Scholar
  189. Luke CJ, Huebner RC, Kasmiersky V, Barbour AG (1997) Oral delivery of purified lipoprotein OspA protects mice from systemic infection with Borrelia burgdorferi. Vaccine 15:739–746.PubMedCrossRefGoogle Scholar
  190. Ma Y, Weis JJ (1993) Borrelia burgdorferi outer surface lipoproteins OspA and OspB possess B-cell mitogenic and cytokine-stimulatory properties. Infect Immun 61:3843–3853.PubMedGoogle Scholar
  191. Ma J, Gingrich-Baker C, Franchi PM, Bulger P, Coughlin RT (1995) Molecular analysis of neutralizing epitopes on outer surface proteins A and B of Borrelia burgdorferi. Infect Immun 63:2221–2227.PubMedGoogle Scholar
  192. Magnarelli LA, Lawrenz M, Norris SJ, Fikrig E (2002) Comparative reactivity of human sera to recombinant VlsE and otherBorrelia burgdorferi antigens in class-specific enzyme-linked immunosorbent assays for Lyme borreliosis. J Med Microbiol 51:649–655.PubMedGoogle Scholar
  193. Martin F, Kearney JF (2001) B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 13:195–201.PubMedCrossRefGoogle Scholar
  194. Martin R, Martens U, Sticht-Groh V, Dorries R, Kruger H (1988) Persistent intrathecal secretion of oligoclonal,Borrelia burgdorferi-specific IgG in chronic meningoradiculomyelitis. J Neurol 235:229–233.PubMedCrossRefGoogle Scholar
  195. Matyniak JE, Reiner SL (1995) T helper phenotype and genetic susceptibility in experimental Lyme disease. J Exp Med 181:1251–1254.PubMedCrossRefGoogle Scholar
  196. Mbow ML, Gilmore RD Jr, Titus RG (1999) An OspC-specific monoclonal antibody passively protects mice from tick-transmitted infection byBorrelia burgdorferi B31. Infect Immun 67:5470–5472.PubMedGoogle Scholar
  197. McDowell JV, Tran E, Hamilton D, Wolfgang J, Miller K, Marconi RT (2003) Analysis of the ability of spirochete species associated with relapsing fever, avian borreliosis, and epizootic bovine abortion to bind factor H and cleave c3b. J Clin Microbiol 41:3905–3910.PubMedCrossRefGoogle Scholar
  198. McDowell JV, Wolfgang J, Senty L, Sundy CM, Noto MJ, Marconi RT (2004) Demonstration of the involvement of outer surface protein E coiled coil structural domains and higher order structural elements in the binding of infection-induced antibody and the complement-regulatory protein, factor H. J Immunol 173:7471–7480.PubMedGoogle Scholar
  199. McDowell JV, Hovis KM, Zhang H, Tran E, Lankford J, Marconi RT (2006) Evidence that the BBA68 protein (BbCRASP-1) of the Lyme disease spirochetes does not contribute to factor H-mediated immune evasion in humans and other animals. Infect Immun 74:3030–3034.PubMedCrossRefGoogle Scholar
  200. McKisic MD, Barthold SW (2000) T-cell-independent responses toBorrelia burgdorferi are critical for protective immunity and resolution of lyme disease. Infect Immun 68:5190–5197.PubMedCrossRefGoogle Scholar
  201. Meier JT, Simon MI, Barbour AG (1985) Antigenic variation is associated with DNA rearrangements in a relapsing fever Borrelia. Cell 41:403–409.PubMedCrossRefGoogle Scholar
  202. Meri T, Cutler SJ, Blom AM, Meri S, Jokiranta TS (2006) Relapsing fever spirochetesBorrelia recurrentis andB. duttonii acquire complement regulators C4b-binding protein and factor H. Infect Immun 74:4157–4163.PubMedCrossRefGoogle Scholar
  203. Modolell M, Schaible UE, Rittig M, Simon MM (1994) Killing ofBorrelia burgdorferi by macrophages is dependent on oxygen radicals and nitric oxide and can be enhanced by antibodies to outer surface proteins of the spirochete. Immunol Lett 40:139–146.PubMedCrossRefGoogle Scholar
  204. Mogilyansky E, Loa CC, Adelson ME, Mordechai E, Tilton RC (2004) Comparison of Western immunoblotting and the C6 Lyme antibody test for laboratory detection of Lyme disease. Clin Diagn Lab Immunol 11:924–929.PubMedGoogle Scholar
  205. Montecino-Rodriguez E, Dorshkind K (2006) New perspectives in B-1 B cell development and function. Trends Immunol 27:428–433.PubMedCrossRefGoogle Scholar
  206. Montgomery RR, Malawista SE (1996) Entry ofBorrelia burgdorferi into macrophages is end-on and leads to degradation in lysosomes. Infect Immun 64:2867–2872.PubMedGoogle Scholar
  207. Montgomery RR, Nathanson MH, Malawista SE (1993) The fate ofBorrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery. J Immunol 150:909–915.PubMedGoogle Scholar
  208. Montgomery RR, Nathanson MH, Malawista SE (1994) Fc- and non-Fc-mediated phagocytosis ofBorrelia burgdorferi by macrophages. J Infect Dis 170:890–893.PubMedGoogle Scholar
  209. Montgomery RR, Lusitani D, de Boisfleury Chevance A, Malawista SE (2002) Human phagocytic cells in the early innate immune response to Borrelia burgdorferi. J Infect Dis 185:1773–1779.PubMedCrossRefGoogle Scholar
  210. Morshed MG, Yokota M, Nakazawa T, Konishi H (1993) Transfer of antibody againstBorrelia duttonii from mother to young in ddY mice. Infect Immun 61:4147–4152.PubMedGoogle Scholar
  211. Munson EL, Du Chateau BK, Jobe DA, Lovrich SD, Callister SM, Schell RF (2000) Production of borreliacidal antibody to outer surface protein A in vitro and modulation by interleukin-4. Infect Immun 68:5496–5501.PubMedCrossRefGoogle Scholar
  212. Munson EL, Du Chateau BK, Jensen JR, Callister SM, DeCoster DJ, Schell RF (2002) Gamma interferon inhibits production of Anti-OspA borreliacidal antibody in vitro. Clin Diagn Lab Immunol 9:1095–1101.PubMedGoogle Scholar
  213. Munson EL, DeCoster DJ, Nardelli DT, England DM, Callister SM, Schell RF (2004) Neutralization of gamma interferon augments borreliacidal antibody production and severe destructive Lyme arthritis in C3H/HeJ mice. Clin Diagn Lab Immunol 11:35–41.PubMedGoogle Scholar
  214. Munson EL, Nardelli DT, Luk KH, Remington MC, Callister SM, Schell RF (2006) Interleukin-6 promotes anti-OspA borreliacidal antibody production in vitro. Clin Vaccine Immunol 13:19–25.PubMedCrossRefGoogle Scholar
  215. Murray N, Kristoferitsch W, Stanek G, Steck AJ (1986) Specificity of CSF antibodies against components ofBorrelia burgdorferi in patients with meningopolyneuritis Garin-Bujadoux-Bannwarth. J Neurol 233:224–227.PubMedCrossRefGoogle Scholar
  216. Nassal M, Skamel C, Kratz PA, Wallich R, Stehle T, Simon MM (2005) A fusion product of the completeBorrelia burgdorferi outer surface protein A (OspA) and the hepatitis B virus capsid protein is highly immunogenic and induces protective immunity similar to that seen with an effective lipidated OspA vaccine formula. Eur J Immunol 35:655–665.PubMedCrossRefGoogle Scholar
  217. Neubert U, Schaller M, Januschke E, Stolz W, Schmieger H (1993) Bacteriophages induced by ciprofloxacin in aBorrelia burgdorferi skin isolate. Zentralbl Bakteriol 279:307–315.PubMedGoogle Scholar
  218. Newman K Jr, Johnson RC (1981) In vivo evidence that an intact lytic complement pathway is not essential for successful removal of circulatingBorrelia turicatae from mouse blood. Infect Immun 31:465–469.PubMedGoogle Scholar
  219. Newman K Jr, Johnson RC (1984) T-cell-independent elimination of Borrelia turicatae. Infect Immun 45:572–576.PubMedGoogle Scholar
  220. Nieva J, Kerwin L, Wentworth AD, Lerner RA, Wentworth P Jr (2006) Immunoglobulins can utilize riboflavin (Vitamin B2) to activate the antibody-catalyzed water oxidation pathway. Immunol Lett 103:33–38.PubMedCrossRefGoogle Scholar
  221. Novy FG, Knapp RE (1906) Studies onSpirillum obermeieri and related organisms. J Infect Dis 3:291–393.Google Scholar
  222. Nowling JM, Philipp MT (1999) Killing of Borrelia burgdorferi by antibody elicited by OspA vaccine is inefficient in the absence of complement. Infect Immun 67:443–445.PubMedGoogle Scholar
  223. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel RM (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159.PubMedCrossRefGoogle Scholar
  224. Oliver AM, Martin F, Kearney JF (1999) IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J Immunol 162:7198–7207.PubMedGoogle Scholar
  225. Pachner AR, Ricalton NS (1992) Western blotting in evaluating Lyme seropositivity and the utility of a gel densitometric approach. Neurology 42:2185–2192.PubMedGoogle Scholar
  226. Pennington PM, Allred CD, West CS, Alvarez R, Barbour AG (1997) Arthritis severity and spirochete burden are determined by serotype in theBorrelia turicatae-mouse model of Lyme disease. Infect Immun 65:285–292.PubMedGoogle Scholar
  227. Philipp MT, Bowers LC, Fawcett PT, Jacobs MB, Liang FT, Marques AR, Mitchell PD, Purcell JE, Ratterree MS, Straubinger RK (2001) Antibody response to IR6, a conserved immunodominant region of the VlsE lipoprotein, wanes rapidly after antibiotic treatment ofBorrelia burgdorferi infection in experimental animals and in humans. J Infect Dis 184:870–878.PubMedCrossRefGoogle Scholar
  228. Philipp MT, Wormser GP, Marques AR, Bittker S, Martin DS, Nowakowski J, Dally LG (2005) A decline in C6 antibody titer occurs in successfully treated patients with culture-confirmed early localized or early disseminated Lyme borreliosis. Clin Diagn Lab Immunol 12:1069–1074.PubMedGoogle Scholar
  229. Piesman J, Sinsky RJ (1988) Ability to Ixodes scapularis,Dermacentor variabilis, andAmblyomma americanum (Acari: Ixodidae) to acquire, maintain, and transmit Lyme disease spirochetes (Borrelia burgdorferi). J Med Entomol 25:336–339.PubMedGoogle Scholar
  230. Pillai S, Cariappa A, Moran ST (2005) Marginal zone B cells. Annu Rev Immunol 23:161–196.PubMedCrossRefGoogle Scholar
  231. Plasterk RH, Simon MI, Barbour AG (1985) Transposition of structural genes to an expression sequence on a linear plasmid causes antigenic variation in the bacterium Borrelia hermsii. Nature 318:257–263.PubMedCrossRefGoogle Scholar
  232. Porcella SF, Raffel SJ, Schrumpf ME, Schriefer ME, Dennis DT, Schwan TG (2000) Serodiagnosis of louse-borne relapsing fever with glycerophosphodiester phosphodiesterase (GlpQ) from Borrelia recurrentis. J Clin Microbiol 38:3561–3571.PubMedGoogle Scholar
  233. Probert WS, Crawford M, LeFebvre RB (1997) Antibodies to OspB prevent infection of C3H mice challenged withBorrelia burgdorferi isolates expressing truncated OspB antigens. Vaccine 15:15–19.PubMedCrossRefGoogle Scholar
  234. Rao TD, Frey AB (1995) Protective resistance to experimentalBorrelia burgdorferi infection of mice by adoptive transfer of a CD4+ T cell clone. Cell Immunol 162:225–234.PubMedCrossRefGoogle Scholar
  235. Ras NM, Lascola B, Postic D, Cutler SJ, Rodhain F, Baranton G, Raoult D (1996) Phylogenesis of relapsing feverBorrelia spp. Int J Syst Bacteriol 46:859–865.PubMedCrossRefGoogle Scholar
  236. Rathinavelu S, Broadwater A, de Silva AM (2003) Does host complement killBorrelia burgdorferi within ticks? Infect Immun 71:822–829.PubMedCrossRefGoogle Scholar
  237. Remington MC, Munson EL, Callister SM, Molitor ML, Christopherson JA, DeCoster DJ, Lovrich SD, Schell RF (2001) Interleukin-6 enhances production of anti-OspC immunoglobulin G2b borreliacidal antibody. Infect Immun 69:4268–4275.PubMedCrossRefGoogle Scholar
  238. Rittig MG, Krause A, Haupl T, Schaible UE, Modolell M, Kramer MD, Lutjen-Drecoll E, Simon MM, Burmester GR (1992) Coiling phagocytosis is the preferential phagocytic mechanism for Borrelia burgdorferi. Infect Immun 60:4205–4212.PubMedGoogle Scholar
  239. Rittig MG, Jagoda JC, Wilske B, Murgia R, Cinco M, Repp R, Burmester GR, Krause A (1998) Coiling phagocytosis discriminates between different spirochetes and is enhanced by phorbol myristate acetate and granulocyte-macrophage colony-stimulating factor. Infect Immun 66:627–635.PubMedGoogle Scholar
  240. Rohrer JW, Gershon RK, Lynch RG, Kemp JD (1983) Enhancement of B lymphocyte secretory differentiation by a Ly 1+, 2-, Qa-1+ helper T cell subset that sees both antigen and determinants on immunoglobulin. J Mol Cell Immunol 1:50–64.PubMedGoogle Scholar
  241. Rose CD, Fawcett PT, Gibney KM (2001) Arthritis following recombinant outer surface protein A vaccination for Lyme disease. J Rheumatol 28:2555–2557.PubMedGoogle Scholar
  242. Rossmann E, Kitiratschky V, Hofmann H, Kraiczy P, Simon MM, Wallich R (2006) BbCRASP-1 of the Lyme disease spirochetes is expressed in humans and induces antibody responses restricted to non-denatured structural determinants. Infect Immun 74:7024–7028.PubMedCrossRefGoogle Scholar
  243. Rousselle JC, Callister SM, Schell RF, Lovrich SD, Jobe DA, Marks JA, Wieneke CA (1998) Borreliacidal antibody production against outer surface protein C of Borrelia burgdorferi. J Infect Dis 178:733–741.PubMedCrossRefGoogle Scholar
  244. Russell H, Sampson JS, Schmid GP, Wilkinson HW, Plikaytis B (1984) Enzyme-linked immunosorbent assay and indirect immunofluorescence assay for Lyme disease. J Infect Dis 149:465–470.PubMedGoogle Scholar
  245. Sadziene A, Jonsson M, Bergstrom S, Bright RK, Kennedy RC, Barbour AG (1994) A bactericidal antibody toBorrelia burgdorferi is directed against a variable region of the OspB protein. Infect Immun 62:2037–2045.PubMedGoogle Scholar
  246. Satoskar AR, Elizondo J, Monteforte GM, Stamm LM, Bluethmann H, Katavolos P, Telford SR 3rd (2000) Interleukin-4-deficient BALB/c mice develop an enhanced Th1-like response but control cardiac inflammation followingBorrelia burgdorferi infection. FEMS Microbiol Lett 183:319–325.PubMedCrossRefGoogle Scholar
  247. Schaible UE, Kramer MD, Eichmann K, Modolell M, Museteanu C, Simon MM (1990) Monoclonal antibodies specific for the outer surface protein A (OspA) ofBorrelia burgdorferi prevent Lyme borreliosis in severe combined immunodeficiency (SCID) mice. Proc Natl Acad Sci U S A 87:3768–3772.PubMedCrossRefGoogle Scholar
  248. Schaible UE, Wallich R, Kramer MD, Nerz G, Stehle T, Museteanu C, Simon MM (1994) Protection againstBorrelia burgdorferi infection in SCID mice is conferred by presensitized spleen cells and partially by B but not T cells alone. Int Immunol 6:671–681.PubMedCrossRefGoogle Scholar
  249. Scheckelhoff MR, Telford SR, Hu LT (2006) Protective efficacy of an oral vaccine to reduce carriage ofBorrelia burgdorferi (strain N40) in mouse and tick reservoirs. Vaccine 24:1949–1957.PubMedCrossRefGoogle Scholar
  250. Schluesener HJ, Martin R, Sticht-Groh V (1989) Autoimmunity in Lyme disease: molecular cloning of antigens recognized by antibodies in the cerebrospinal fluid. Autoimmunity 2:323–330.PubMedCrossRefGoogle Scholar
  251. Schmitz JL, Lovrich SD, Callister SM, Schell RF (1991) Depletion of complement and effects on passive transfer of resistance to infection with Borrelia burgdorferi. Infect Immun 59:3815–3818.PubMedGoogle Scholar
  252. Schmitz JL, Schell RF, Callister SM, Lovrich SD, Day SP, Coe JE (1992) Immunoglobulin G2 confers protection againstBorrelia burgdorferi infection in LSH hamsters. Infect Immun 60:2677–2682.PubMedGoogle Scholar
  253. Schoenfeld R, Araneo B, Ma Y, Yang LM, Weis JJ (1992) Demonstration of a B-lymphocyte mitogen produced by the Lyme disease pathogen, Borrelia burgdorferi. Infect Immun 60:455–464.PubMedGoogle Scholar
  254. Schroder NW, Schombel U, Heine H, Gobel UB, Zahringer U, Schumann RR (2003) Acylated cholesteryl galactoside as a novel immunogenic motif inBorrelia burgdorferi sensu stricto. J Biol Chem 278:33645–33653.PubMedCrossRefGoogle Scholar
  255. Schutzer SE, Coyle PK, Krupp LB, Deng Z, Belman AL, Dattwyler R, Luft BJ (1997) Simultaneous expression ofBorrelia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease. J Clin Invest 100:763–767.PubMedCrossRefGoogle Scholar
  256. Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA (1995) Induction of an outer surface protein onBorrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913.PubMedCrossRefGoogle Scholar
  257. Schwan TG, Schrumpf ME, Hinnebusch BJ, Anderson DE Jr, Konkel ME (1996) GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol 34:2483–2492.PubMedGoogle Scholar
  258. Schwan TG, Battisti JM, Porcella SF, Raffel SJ, Schrumpf ME, Fischer ER, Carroll JA, Stewart PE, Rosa P, Somerville GA (2003) Glycerol-3-phosphate acquisition in spirochetes: distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) amongBorrelia species. J Bacteriol 185:1346–1356.PubMedCrossRefGoogle Scholar
  259. Scriba M, Ebrahim JS, Schlott T, Eiffert H (1993) The 39-kilodalton protein ofBorrelia burgdorferi: a target for bactericidal human monoclonal antibodies. Infect Immun 61:4523–4526.PubMedGoogle Scholar
  260. Sethi N, Sondey M, Bai Y, Kim KS, Cadavid D (2006) Interaction of a neurotropic strain ofBorrelia turicatae with the cerebral microcirculation system. Infect Immun 74:6408–6418.PubMedCrossRefGoogle Scholar
  261. Sigal LH (1993) Cross-reactivity betweenBorrelia burgdorferi flagellin and a human axonal 64, 000 molecular weight protein. J Infect Dis 167:1372–1378.PubMedGoogle Scholar
  262. Sigal LH (1997) Lyme disease: a review of aspects of its immunology and immunopathogenesis. Annu Rev Immunol 15:63–92.PubMedCrossRefGoogle Scholar
  263. Sigal LH, Tatum AH (1988) Lyme disease patients’ serum contains IgM antibodies toBorrelia burgdorferi that cross-react with neuronal antigens. Neurology 38:1439–1442.PubMedGoogle Scholar
  264. Sigal LH, Williams S (1997) A monoclonal antibody toBorrelia burgdorferi flagellin modifies neuroblastoma cell neuritogenesis in vitro: a possible role for autoimmunity in the neuropathy of Lyme disease. Infect Immun 65:1722–1728.PubMedGoogle Scholar
  265. Sigal LH, Zahradnik JM, Lavin P, Patella SJ, Bryant G, Haselby R, Hilton E, Kunkel M, Adler-Klein D, Doherty T, Evans J, Molloy PJ, Seidner AL, Sabetta JR, Simon HJ, Klempner MS, Mays J, Marks D, Malawista SE (1998) A vaccine consisting of recombinantBorrelia burgdorferi outer-surface protein A to prevent Lyme disease. Recombinant Outer-Surface Protein A Lyme Disease Vaccine Study Consortium. N Engl J Med 339:216–222.PubMedCrossRefGoogle Scholar
  266. Simon MM, Schaible UE, Kramer MD, Eckerskorn C, Museteanu C, Muller-Hermelink HK, Wallich R (1991) Recombinant outer surface protein a fromBorrelia burgdorferi induces antibodies protective against spirochetal infection in mice. J Infect Dis 164:123–132.PubMedGoogle Scholar
  267. Skamel C, Ploss M, Bottcher B, Stehle T, Wallich R, Simon MM, Nassal M (2006) Hepatitis B virus capsid-like particles can display the complete, dimeric outer surface protein C and stimulate production of protective antibody responses againstBorrelia burgdorferi infection. J Biol Chem 281:17474–17481.PubMedCrossRefGoogle Scholar
  268. Snapper CM, Paul WE (1987) Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–947.PubMedCrossRefGoogle Scholar
  269. Sole M, Bantar C, Indest K, Gu Y, Ramamoorthy R, Coughlin R, Philipp MT (1998)Borrelia burgdorferi escape mutants that survive in the presence of antiserum to the OspA vaccine are killed when complement is also present. Infect Immun 66:2540–2546.PubMedGoogle Scholar
  270. Sood SK, Rubin LG, Blader ME, Ilowite NT (1993) Positive serology for Lyme borreliosis in patients with juvenile rheumatoid arthritis in a Lyme borreliosis endemic area: analysis by immunoblot. J Rheumatol 20:739–741.PubMedGoogle Scholar
  271. Southern PM, Sanford JP (1969) Relapsing fever. A clinical and microbiological review. Medicine 48:129–149.CrossRefGoogle Scholar
  272. Spagnuolo PJ, Butler T, Bloch EH, Santoro C, Tracy JW, Johnson RC (1982) Opsonic requirements for phagocytosis ofBorrelia hermsii by human polymorphonuclear leukocytes. J Infect Dis 145:358–364.PubMedGoogle Scholar
  273. Stanek G (1991) Laboratory diagnosis and seroepidemiology of Lyme borreliosis. Infection 19:263–267.PubMedCrossRefGoogle Scholar
  274. Steere AC (2001) Lyme disease. N Engl J Med 345:115–125.PubMedCrossRefGoogle Scholar
  275. Steere AC, Hardin JA, Malawista SE (1977) Erythema chronicum migrans and Lyme arthritis: cryoimmunoglobulins and clinical activity of skin and joints. Science 196:1121–1122.PubMedCrossRefGoogle Scholar
  276. Steere AC, Hardin JA, Ruddy S, Mummaw JG, Malawista SE (1979) Lyme arthritis: correlation of serum and cryoglobulin IgM with activity, and serum IgG with remission. Arthritis Rheum 22:471–483.PubMedCrossRefGoogle Scholar
  277. Steere AC, Berardi VP, Weeks KE, Logigian EL, Ackermann R (1990) Evaluation of the intrathecal antibody response to Borrelia burgdorferi as a diagnostic test for Lyme neuroborreliosis. J Infect Dis 161:1203–1209.PubMedGoogle Scholar
  278. Steere AC, Gross D, Meyer AL, Huber BT (2001) Autoimmune mechanisms in antibiotic treatment-resistant lyme arthritis. J Autoimmun 16:263–268.PubMedCrossRefGoogle Scholar
  279. Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J, Schmid CH, Laukamp S, Buscarino C, Krause DS (1998) Vaccination against Lyme disease with recombinantBorrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med 339:209–215.PubMedCrossRefGoogle Scholar
  280. Steere AC, Falk B, Drouin EE, Baxter-Lowe LA, Hammer J, Nepom GT (2003) Binding of outer surface protein A and human lymphocyte function-associated antigen 1 peptides to HLA-DR molecules associated with antibiotic treatment-resistant Lyme arthritis. Arthritis Rheum 48:534–540.PubMedCrossRefGoogle Scholar
  281. Stevens TL, Bossie A, Sanders VM, Fernandez-Botran R, Coffman RL, Mosmann TR, Vitetta ES (1988) Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 334:255–258.PubMedCrossRefGoogle Scholar
  282. Stevenson B, Porcella SF, Oie KL, Fitzpatrick CA, Raffel SJ, Lubke L, Schrumpf ME, Schwan TG (2000) The relapsing fever spirocheteBorrelia hermsii contains multiple, antigen-encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes. Infect Immun 68:3900–3908.PubMedCrossRefGoogle Scholar
  283. Stevenson B, El-Hage N, Hines MA, Miller JC, Babb K (2002) Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect Immun 70:491–497.PubMedCrossRefGoogle Scholar
  284. Stoenner HG, Dodd T, Larsen C (1982) Antigenic variation of Borrelia hermsii. J Exp Med 156:1297–1311.PubMedCrossRefGoogle Scholar
  285. Tai KF, Ma Y, Weis JJ (1994) Normal human B lymphocytes and mononuclear cells respond to the mitogenic and cytokine-stimulatory activities ofBorrelia burgdorferi and its lipoprotein OspA. Infect Immun 62:520–528.PubMedGoogle Scholar
  286. Takayama K, Rothenberg RJ, Barbour AG (1987) Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 55:2311–2313.PubMedGoogle Scholar
  287. Trollmo C, Meyer AL, Steere AC, Hafler DA, Huber BT (2001) Molecular mimicry in Lyme arthritis demonstrated at the single cell level: LFA-1 alpha L is a partial agonist for outer surface protein A-reactive T cells. J Immunol 166:5286–5291.PubMedGoogle Scholar
  288. U.S. Department of Health and Human Services CfDCaP (1995) Recommendations for test performance and interpretation from the Second National Conference on Serologic Diagnosis of Lyme Disease. Morb Mortal Wkly Rep 44:590–591.Google Scholar
  289. Ulbrandt ND, Cassatt DR, Patel NK, Roberts WC, Bachy CM, Fazenbaker CA, Hanson MS (2001) Conformational nature of the Borrelia burgdorferi decorin binding protein A epitopes that elicit protective antibodies. Infect Immun 69:4799–4807.PubMedCrossRefGoogle Scholar
  290. van Dam AP, Oei A, Jaspars R, Fijen C, Wilske B, Spanjaard L, Dankert J (1997) Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. Infect Immun 65:1228–1236.PubMedGoogle Scholar
  291. Vincent MS, Gumperz JE, Brenner MB (2003) Understanding the function of CD1-restricted T cells. Nat Immunol 4:517–23.PubMedCrossRefGoogle Scholar
  292. von Lackum K, Miller JC, Bykowski T, Riley SP, Woodman ME, Brade V, Kraiczy P, Stevenson B, Wallich R (2005) Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle. Infect Immun 73:7398–7405.CrossRefGoogle Scholar
  293. Wang G, van Dam AP, Le Fleche A, Postic D, Peter O, Baranton G, de Boer R, Spanjaard L, Dankert J (1997) Genetic and phenotypic analysis ofBorrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). Int J Syst Bacteriol 47:926–932.PubMedCrossRefGoogle Scholar
  294. Weinstein A, Britchkov M (2002) Lyme arthritis and post-Lyme disease syndrome. Curr Opin Rheumatol 14:383–387.PubMedCrossRefGoogle Scholar
  295. Wentworth AD, Jones LH, Wentworth P Jr, Janda KD, Lerner RA (2000) Antibodies have the intrinsic capacity to destroy antigens. Proc Natl Acad Sci U S A 97:10930–10935.PubMedCrossRefGoogle Scholar
  296. Wentworth P Jr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, Babior BM, Eschenmoser A, Lerner RA (2002) Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298:2195–2199.PubMedCrossRefGoogle Scholar
  297. Wentworth P Jr, Wentworth AD, Zhu X, Wilson IA, Janda KD, Eschenmoser A, Lerner RA (2003) Evidence for the production of trioxygen species during antibody-catalyzed chemical modification of antigens. Proc Natl Acad Sci U S A 100:1490–1493.PubMedCrossRefGoogle Scholar
  298. Wheeler CM, Garcia Monco JC, Benach JL, Golightly MG, Habicht GS, Steere AC (1993) Nonprotein antigens of Borrelia burgdorferi. J Infect Dis 167:665–674.PubMedGoogle Scholar
  299. Whitmire WM, Garon CF (1993) Specific and nonspecific responses of murine B cells to membrane blebs of Borrelia burgdorferi. Infect Immun 61:1460–1467.PubMedGoogle Scholar
  300. Wilkinson HW (1984) Immunodiagnostic tests for Lyme disease. Yale J Biol Med 57:567–572.PubMedGoogle Scholar
  301. Willett TA, Meyer AL, Brown EL, Huber BT (2004) An effective second-generation outer surface protein A-derived Lyme vaccine that eliminates a potentially autoreactive T cell epitope. Proc Natl Acad Sci U S A 101:1303–1308.PubMedCrossRefGoogle Scholar
  302. Wilske B, Schierz G, Preac-Mursic V, von Busch K, Kuhbeck R, Pfister HW, Einhaupl K (1986) Intrathecal production of specific antibodies againstBorrelia burgdorferi in patients with lymphocytic meningoradiculitis (Bannwarth’s syndrome). J Infect Dis 153:304–314.PubMedGoogle Scholar
  303. Xu Q, Seemanapalli SV, McShan K, Liang FT (2006) Constitutive expression of outer surface protein C diminishes the ability ofBorrelia burgdorferi to evade specific humoral immunity. Infect Immun 74:5177–5184.PubMedCrossRefGoogle Scholar
  304. Yang JQ, Singh AK, Wilson MT, Satoh M, Stanic AK, Park JJ, Hong S, Gadola SD, Mizutani A, Kakumanu SR, Reeves WH, Cerundolo V, Joyce S, Van Kaer L, Singh RR (2003) Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J Immunol 171:2142–2153.PubMedGoogle Scholar
  305. Yang L, Ma Y, Schoenfeld R, Griffiths M, Eichwald E, Araneo B, Weis JJ (1992) Evidence for B-lymphocyte mitogen activity inBorrelia burgdorferi-infected mice. Infect Immun 60:3033–3041.PubMedGoogle Scholar
  306. Yokota M, Morshed MG, Nakazawa T, Konishi H (1997) Protective activity ofBorrelia duttonii-specific immunoglobulin subclasses in mice. J Med Microbiol 46:675–680.PubMedCrossRefGoogle Scholar
  307. Yu D, Liang J, Yu H, Wu H, Xu C, Liu J, Lai R (2006) A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum. Biochem Biophys Res Commun 343:585–590.PubMedCrossRefGoogle Scholar
  308. Yu Z, Tu J, Chu YH (1997) Confirmation of cross-reactivity between Lyme antibody H9724 and human heat shock protein 60 by a combinatorial approach. Anal Chem 69:4515–4518.PubMedCrossRefGoogle Scholar
  309. Zhang JR, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275–285.PubMedCrossRefGoogle Scholar
  310. Zhong W, Stehle T, Museteanu C, Siebers A, Gern L, Kramer M, Wallich R, Simon MM (1997) Therapeutic passive vaccination against chronic Lyme disease in mice. Proc Natl Acad Sci U S A 94:12533–12538.PubMedCrossRefGoogle Scholar
  311. Zhong W, Gern L, Stehle T, Museteanu C, Kramer M, Wallich R, Simon MM (1999) Resolution of experimental and tick-borneBorrelia burgdorferi infection in mice by passive, but not active immunization using recombinant OspC. Eur J Immunol 29:946–957.PubMedCrossRefGoogle Scholar
  312. Zhu X, Wentworth P Jr, Wentworth AD, Eschenmoser A, Lerner RA, Wilson IA (2004) Probing the antibody-catalyzed water-oxidation pathway at atomic resolution. Proc Natl Acad Sci U S A 101:2247–2252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • T. J. LaRocca
  • J. L. Benach
    • 1
  1. 1.Center for Infectious Diseases5120 Centers for Molecular MedicineStony BrookUSA

Personalised recommendations