Bisimulation for Neighbourhood Structures

  • Helle Hvid Hansen
  • Clemens Kupke
  • Eric Pacuit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4624)

Abstract

Neighbourhood structures are the standard semantic tool used to reason about non-normal modal logics. In coalgebraic terms, a neighbourhood frame is a coalgebra for the contravariant powerset functor composed with itself, denoted by 22. In our paper, we investigate the coalgebraic equivalence notions of 22-bisimulation, behavioural equivalence and neighbourhood bisimulation (a notion based on pushouts), with the aim of finding the logically correct notion of equivalence on neighbourhood structures. Our results include relational characterisations for 22-bisimulation and neighbourhood bisimulation, and an analogue of Van Benthem’s characterisation theorem for all three equivalence notions. We also show that behavioural equivalence gives rise to a Hennessy-Milner theorem, and that this is not the case for the other two equivalence notions.

Keywords

Neighbourhood semantics non-normal modal logic bisimulation behavioural equivalence invariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J.: Theory of Mathematical Structures. Reidel Publications (1983)Google Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 167–247. Reidel, Doordrecht (1984)Google Scholar
  4. 4.
    van Benthem, J.: Information transfer across Chu spaces. Logic Journal of the IGPL 8(6), 719–731 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  6. 6.
    Chang, C., Keisler, H.: Model Theory. North-Holland, Amsterdam (1973)Google Scholar
  7. 7.
    Chellas, B.F.: Modal Logic - An Introduction. Cambridge University Press, Cambridge (1980)MATHGoogle Scholar
  8. 8.
    Goble, L.: Murder most gentle: The paradox deepens. Philosophical Studies 64(2), 217–227 (1991)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gumm, H.P., Schröder, T.: Types and coalgebraic structure. Algebra universalis 53, 229–252 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hansen, H.H.: Monotonic modal logic (Master’s thesis). Research Report PP-2003-24, ILLC, University of Amsterdam (2003)Google Scholar
  11. 11.
    Hansen, H.H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In: Proceedings CMCS 2004. ENTCS, vol. 106, pp. 121–143. Elsevier, Amsterdam (2004)Google Scholar
  12. 12.
    Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures. CWI technical report (to appear)Google Scholar
  13. 13.
    Kurz, A.: Personal communicationGoogle Scholar
  14. 14.
    Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-Maximilians-Universität (2000)Google Scholar
  15. 15.
    Otto, M.: Bisimulation invariance and finite models (Association for Symbolic Logic). In: Logic Colloquium ’02. Lecture Notes in Logic, Association for Symbolic Logic, vol. 27 (2006)Google Scholar
  16. 16.
    Padmanabhan, V., Governatori, G., Su, K.: Knowledge assesment: A modal logic approach. In: Proceedings of the 3rd Int. Workshop on Knowledge and Reasoning for Answering Questions (KRAQ) (2007)Google Scholar
  17. 17.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoretical Computer Science 309, 177–193 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pauly, M.: Bisimulation for general non-normal modal logic. Manuscript (1999)Google Scholar
  19. 19.
    Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation 12(1), 149–166 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rutten, J.J.M.M.: Relators and metric bisimulations. In: Proccedings of CMCS 1998. ENTCS, vol. 11 (1998)Google Scholar
  21. 21.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249, 3–80 (2000)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    ten Cate, B., Gabelaia, D., Sustretov, D.: Modal languages for topology: Expressivity and definability (Under submission)Google Scholar
  23. 23.
    Vardi, M.: On epistemic logic and logical omniscience. In: Halpern, J. (ed.) Proceedings TARK 1986, pp. 293–305. Morgan Kaufmann, San Francisco (1986)Google Scholar
  24. 24.
    Venema, Y.: Algebras and coalgebras. In: Handbook of Modal Logic, vol. 3, pp. 331–426. Elsevier, Amsterdam (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Helle Hvid Hansen
    • 1
    • 2
  • Clemens Kupke
    • 1
  • Eric Pacuit
    • 3
  1. 1.Centrum voor Wiskunde en Informatica (CWI) 
  2. 2.Vrije Universiteit Amsterdam (VUA) 
  3. 3.Universiteit van Amsterdam (UvA) 

Personalised recommendations