Frequent Hypergraph Mining

  • Tamás Horváth
  • Björn Bringmann
  • Luc De Raedt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4455)

Abstract

The class of frequent hypergraph mining problems is introduced which includes the frequent graph mining problem class and contains also the frequent itemset mining problem. We study the computational properties of different problems belonging to this class. In particular, besides negative results, we present practically relevant problems that can be solved in incremental-polynomial time. Some of our practical algorithms are obtained by reductions to frequent graph mining and itemset mining problems. Our experimental results in the domain of citation analysis show the potential of the framework on problems that have no natural representation as an ordinary graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)Google Scholar
  2. 2.
    Berge, C.: Hypergraphs. North Holland Mathematical Library, vol. 445. Elsevier, Amsterdam (1989)MATHGoogle Scholar
  3. 3.
    Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual bounded hypergraphs: A survey. In: Proc. of the 2nd SIAM Conference on Data Mining, pp. 87–98 (2002)Google Scholar
  4. 4.
    Chi, Y., Nijssen, S., Muntz, R.R., Kok, J.N.: Frequent subtree mining–an overview. Fundamenta Informaticae 66, 161–198 (2005)MATHMathSciNetGoogle Scholar
  5. 5.
    Dehaspe, L., Toivonen, H.: Discovery of frequent DATALOG patterns. Data Mining and Knowledge Discovery 3, 7–36 (1999)CrossRefGoogle Scholar
  6. 6.
    Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  7. 7.
    Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, New York (2002)Google Scholar
  8. 8.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)MATHGoogle Scholar
  9. 9.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM 30(3), 514–550 (1983)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to NP-Completeness. Freeman, San Francisco, CA (1979)MATHGoogle Scholar
  12. 12.
    Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm, R.S.: Discovering all most specific sentences. ACM Transactions on Database Systems 28(2), 140–174 (2003)CrossRefGoogle Scholar
  13. 13.
    Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. In: Proc. of the 12th ACM SIGKDD International Conference on Knowledge discovery and Data Mining, pp. 197–206. ACM Press, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  16. 16.
    Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)CrossRefGoogle Scholar
  17. 17.
    Nijssen, S., Kok, J.N.: Efficient frequent query discovery in FARMER. In: Proc. of the 17th International Joint Conference on Artificial Intelligence, pp. 891–896. Morgan Kaufmann, San Francisco (2001)Google Scholar
  18. 18.
    Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a difference. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 647–652. ACM Press, New York (2004)CrossRefGoogle Scholar
  19. 19.
    Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 721–724. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  20. 20.
    Yu, C.T., Ozsoyoglu, M.Z.: An algorithm for tree-query membership of a distributed query. In: Proceedings of Computer Software and Applications Conference, pp. 306–312. IEEE Computer Society Press, Los Alamitos (1979)Google Scholar
  21. 21.
    Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the 8th ACM SIGKDD International Conference, pp. 71–80. ACM Press, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tamás Horváth
    • 1
  • Björn Bringmann
    • 2
  • Luc De Raedt
    • 2
  1. 1.Fraunhofer IAIS, Sankt AugustinGermany
  2. 2.Dept. of Computer Science, Katholieke Universiteit LeuvenBelgium

Personalised recommendations