Learning Recursive Patterns for Biomedical Information Extraction

  • Margherita Berardi
  • Donato Malerba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4455)

Abstract

Information in text form remains a greatly unexploited source of biological information. Information Extraction (IE) techniques are necessary to map this information into structured representations that allow facts relating domain-relevant entities to be automatically recognized. In biomedical IE tasks, extracting patterns that model implicit relations among entities is particularly important since biological systems intrinsically involve interactions among several entities. In this paper, we resort to an Inductive Logic Programming (ILP) approach for the discovery of mutual recursive patterns from text. Mutual recursion allows dependencies among entities to be explored in data and extraction models to be applied in a context-sensitive mode. In particular, IE models are discovered in form of classification rules encoding the conditions to fill a pre-defined information template. An application to a real-world dataset composed by publications selected to support biologists in the task of automatic annotation of a genomic database is reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aitken, J.S.: Learning information extraction rules: An inductive logic programming approach. In: Proceedings of the 15th European Conference on Artificial Intelligence, pp. 355–359 (2002)Google Scholar
  2. 2.
    Attimonelli, M., Accetturo, M., Santamaria, M., Lascaro, D., Scioscia, G., Pappada, G., Tommaseo-Ponzetta, M., Torroni, A.: Hmtdb, a human mitochondrial genomic resource based on variability studies supporting population genetics and biomedical research. BMC Bioinformatics 1(6) (2005)Google Scholar
  3. 3.
    Berardi, M., Ceci, M., Malerba, D.: A hybrid strategy for knowledge extraction from biomedical documents. In: ICDAR workshop on Neural Networks and Learning in Document Analysis and Recognition, Seoul, Korea (2005)Google Scholar
  4. 4.
    Califf, M.E., Mooney, R.J.: Relational learning of pattern-match rules for information extraction. In: AAAI ’99/IAAI ’99, pp. 328–334. American Association for Artificial Intelligence (1999)Google Scholar
  5. 5.
    Craven, M., Kumlien, J.: Constructing biological knowledge bases by extracting information from text sources. In: Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pp. 77–86. AAAI Press, Stanford (1999)Google Scholar
  6. 6.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: Gate: A framework and graphical development environment for robust nlp tools and application. In: Proc. of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL 2002), Philadelphia, USA (2002)Google Scholar
  7. 7.
    Cussens, J., Nedellec, C. (ed.): Proceedings of the 4th ICML Workshop on Learning Language in Logic (LLL 2005), Bonn, Germany (2005)Google Scholar
  8. 8.
    Cussens, J., Nedellec, C. (ed.): In: Proceedings of the 4th ICML Workshop on Learning Language in Logic (LLL05), Bonn, Germany (2005)Google Scholar
  9. 9.
    Džeroski, S., Lavrač, N.: Relational Data Mining. Springer-Verlag, Heidelberg (2001)MATHGoogle Scholar
  10. 10.
    Dzeroski, S., Cussens, J., Manandhar, S.: An introduction to inductive logic programming and learning language in logic. In: Cussens, J., Džeroski, S. (eds.) Learning Language in Logic. LNCS (LNAI), vol. 1925, pp. 3–35. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Ferilli, S., Fanizzi, N., Semeraro, G.: Learning logic models for automated text categorization. In: Esposito, F. (ed.) AI*IA 2001: Advances in Artificial Intelligence. LNCS (LNAI), vol. 2175, pp. 81–86. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Flener, P., Yilmaz, S.: Inductive synthesis of recursive logic programs: achievements and prospects. Journal of Logic Programming, Special Issue on Synthesis, Transformation, and Analysis 41(2-3), 141–195 (1999)MATHMathSciNetGoogle Scholar
  13. 13.
    Freitag, D.: Toward general-purpose learning for information extraction. In: Proceedings. of the 17th int. conf. on Computational linguistics, pp. 404–408, Morristown, NJ, USA, Association for Computational Linguistics (1998)Google Scholar
  14. 14.
    Goadrich, M., Oliphant, L., Shavlik, J.W.: Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction. In: Proceedings of the Fourteenth International Conference on Inductive Logic Programming, pp. 98–115 (2004)Google Scholar
  15. 15.
    Hirschman, L., Yeh, A., Blaschke, C., Valencia, A.: Overview of biocreative: critical assessment of information extraction for biology. Bioinformatics 6 (2005)Google Scholar
  16. 16.
    Junker, M., Sintek, M., Rink, M.: Learning for text categorization and information extraction with ilp. In: Learning Language in Logic, pp. 247–258 (1999)Google Scholar
  17. 17.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer-Verlag, Heidelberg (1987)MATHGoogle Scholar
  18. 18.
    Malerba, D.: Learning recursive theories in the normal ilp setting. Fundamenta Informaticae 57(1), 39–77 (2003)MATHMathSciNetGoogle Scholar
  19. 19.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  20. 20.
    Mooney, R.: Learning for semantic interpretation: Scaling up without dumbing down. In: Cussens, J. (ed.) Proc. of the 1st Workshop on Learning Language in Logic, Bled, Slovenia, pp. 7–15 (1999), citeseer.ist.psu.edu/mooney99learning.html
  21. 21.
    Loveland, D.W. (ed.): Machine Learning for Information Extraction in Genomics - State of the art and perspectives. LNCS, vol. 138. Springer, Heidelberg (1982)Google Scholar
  22. 22.
    Porter, M.F.: Readings in information retrieval, chapter An algorithm for suffix stripping, pp. 313–316 (1997)Google Scholar
  23. 23.
    Provost, F.: Learning with imbalanced data sets (invited paper). In: Proc. of AAAI 2000 Workshop on Imbalanced Data Sets (2000)Google Scholar
  24. 24.
    Shatkay, H., Feldman, R.: Mining the biomedical literature in the genomic era: an overview. Journal of Computational Biology 10, 821–855 (2003)CrossRefGoogle Scholar
  25. 25.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Margherita Berardi
    • 1
  • Donato Malerba
    • 1
  1. 1.Dipartimento di Informatica, Università degli Studi di Bari, via Orabona, 4 - 70126 Bari - Italy 

Personalised recommendations