Advertisement

ALLPAD: Approximate Learning of Logic Programs with Annotated Disjunctions

  • Fabrizio Riguzzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4455)

Abstract

In this paper we present the system ALLPAD for learning Logic Programs with Annotated Disjunctions (LPADs). ALLPAD modifies the previous system LLPAD in order to tackle real world learning problems more effectively. This is achieved by looking for an approximate solution rather than a perfect one. ALLPAD has been tested on the problem of classifying proteins according to their tertiary structure and the results compare favorably with most other approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Blockeel, H.: Probabilistic logical models for mendel’s experiments: An exercise. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Riguzzi, F.: Learning logic programs with annotated disjunctions. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 270–287. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Turcotte, M., Muggleton, S., Sternberg, M.J.E.: The effect of relational background knowledge on learning of protein three-dimensional fold signatures. Machine Learning 43(1/2), 81–95 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kersting, K., Raiko, T., Kramer, S., De Raedt, L.: Towards discovering structural signatures of protein folds based on logical hidden markov models. In: Pacific Symposium on Biocomputing, pp. 192–203 (2003)Google Scholar
  6. 6.
    Kersting, K., Gärtner, T.: Fisher kernels for logical sequences. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 205–216. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Kersting, K., De Raedt, L., Raiko, T.: Logical hidden markov models. Journal of Artificial Intelligence Research 25, 425–456 (2006)MathSciNetGoogle Scholar
  8. 8.
    Gutmann, B., Kersting, K.: TildeCRF: Conditional random fields for logical sequences. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fabrizio Riguzzi
    • 1
  1. 1.Dipartimento di Ingegneria, Università di Ferrara, Via Saragat 1, 44100 FerraraItaly

Personalised recommendations