Bounded Curvature Subdivision Without Eigenanalysis

  • Malcolm A. Sabin
  • Thomas J. Cashman
  • Ursula H. Augsdorfer
  • Neil A. Dodgson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4647)


It has long been known how to achieve bounded curvature at extraordinary points of a subdivision scheme by using eigenanalysis and then adjusting the mask of each extraordinary point. This paper provides an alternative insight, based on the use of second divided differences, and applies it to three familiar schemes. A single concept is shown to work in three different contexts. In each case a bounded curvature variant results, with a very simple and elegant implementation.


Fourier Component Subdivision Scheme Regular Case Dominant Eigenvalue Subdivision Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augsdorfer, U., Dodgson, N.A., Sabin, M.A.: Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices. Eurographics 2006, pp. 263–272 (2006)Google Scholar
  2. 2.
    Barthe, L., Gerot, C., Sabin, M.A., Kobbelt, L.: Eigencomponents of a Subdivision Matrix in the Fourier Domain. In: Adv. Multiresolution for Geometric Modelling, pp. 245–258. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Catmull, E., Clark, J.: Recursively Generated B-spline Surfaces on Arbitrary Topological Meshes. CAD 10(6), 183–188 (1978)Google Scholar
  4. 4.
    Doo, D., Sabin, M.: Behaviour of Recursive Subdivision Surfaces Near Extraordinary Points. CAD 10(6), 189–194 (1978)Google Scholar
  5. 5.
    Dyn, N.: Analysis of Convergence and Smoothness by the Formalism of Laurent Polynomials. In: Tutorials on Multiresolution in Geometric Modelling, pp. 51–68. Springer, Heidelberg (2002)Google Scholar
  6. 6.
    Dyn, N., Levin, D., Gregory, J.A.: A Four Point Interpolatory Subdivision Scheme for Curve Design. Computer Aided Geometric Design 4(4), 257–268 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dyn, N., Levin, D., Gregory, J.A.: A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control. ACM Trans. Graphics 9(2), 160–169 (1990)zbMATHCrossRefGoogle Scholar
  8. 8.
    Eastlick, M.: PhD Dissertation. Sheffield University (2006)Google Scholar
  9. 9.
    Kobbelt, L.: Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology. Computer Graphics Forum 15, 409–420 (1996)CrossRefGoogle Scholar
  10. 10.
    Loop, C.: Smooth Subdivision Surfaces Based on Triangles. Master’s Thesis, Department of Mathematics, University of Utah (1987)Google Scholar
  11. 11.
    Peters, J., Reif, U.: Shape Characteristics of Subdivision Surfaces: Basic Principles. Computer Aided Geometric Design 21, 515–599 (2004)MathSciNetGoogle Scholar
  12. 12.
    Reif, U.: A Degree Estimate for Subdivision Surfaces of Higher Regularity. Proc. AMS 124(7), 2167–2174 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sabin, M.: Cubic Recursive Subdivision with Bounded Curvature. In: Schumaker, Laurent, LeMehaute (eds.) Curves and Surfaces, pp. 415–420. Academic Press, San Diego (1991)Google Scholar
  14. 14.
    Sabin, M., Dodgson, N.: A Circle-preserving Variant of the Four-point Subdivision Scheme. In: Mathematical Methods for Curves and Surfaces, Daehlen, Mörken, Schumaker (eds.) Nashboro Press, pp. 275–286 (2004)Google Scholar
  15. 15.
    Velho, L., Zorin, D.: 4-8 Subdivision. Computer Aided Geometric Design 18, 397–427 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Malcolm A. Sabin
    • 1
  • Thomas J. Cashman
    • 2
  • Ursula H. Augsdorfer
    • 2
  • Neil A. Dodgson
    • 2
  1. 1.Numerical Geometry Ltd.UK
  2. 2.Computer Laboratory, University of Cambridge, CB3 0FDUK

Personalised recommendations