Discrete Surfaces in Isotropic Geometry

  • Helmut Pottmann
  • Yang Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4647)


Meshes with planar quadrilateral faces are desirable discrete surface representations for architecture. The present paper introduces new classes of planar quad meshes, which discretize principal curvature lines of surfaces in so-called isotropic 3-space. Like their Euclidean counterparts, these isotropic principal meshes meshes are visually expressing fundamental shape characteristics and they can satisfy the aesthetical requirements in architecture. The close relation between isotropic geometry and Euclidean Laguerre geometry provides a link between the new types of meshes and the known classes of conical meshes and edge offset meshes. The latter discretize Euclidean principal curvature lines and have recently been realized as particularly suited for freeform structures in architecture, since they allow for a supporting beam layout with optimal node properties. We also present a discrete isotropic curvature theory which applies to all types of meshes including triangle meshes. The results are illustrated by discrete isotropic minimal surfaces and meshes computed by a combination of optimization and subdivision.


discrete differential geometry surfaces in architecture isotropic geometry conical mesh edge offset mesh isotropic minimal surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaschke, W.: Vorlesungen über Differentialgeometrie, vol. 3. Springer, Heidelberg (1929)zbMATHGoogle Scholar
  2. 2.
    Bobenko, A., Hoffmann, T., Springborn, B.: Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. of Math. 164, 231–264 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bobenko, A., Pinkall, U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bobenko, A., Suris, Y.: Discrete differential geometry. Consistency as integrability. (2005), monograph pre-published at
  5. 5.
    Bobenko, A., Suris, Y.: On organizing principles of discrete differential geometry, geometry of spheres (to appear)Google Scholar
  6. 6.
    Bobenko, A., Springborn, B.: Variational principles for circle patterns and Koebe’s theorem. Trans. Amer. Math. Soc. 356, 659–689 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brell-Cokcan, S., Pottmann, H.: Tragstruktur für Freiformflächen in Bauwerken (Patent No. A1049/2006) (2006)Google Scholar
  8. 8.
    Cecil, T.: Lie Sphere Geometry. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  9. 9.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graphics 23(3), 905–914 (2004)CrossRefGoogle Scholar
  10. 10.
    Cutler, B., Whiting, E.: Constrained planar remeshing for architecture. In: Symp. Geom. Processing. poster (2006)Google Scholar
  11. 11.
    Glymph, J., et al.: A parametric strategy for freeform glass structures using quadrilateral planar facets. In: Glymph, J. (ed.) Acadia 2002, pp. 303–321. ACM Press, New York (2002)Google Scholar
  12. 12.
    Koenderink, I.J., van Doorn, A.J.: Image processing done right. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 158–172. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Pottmann, H., Wallner, J., Yang, Y.L., Wang, W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25(3), 681–689 (2006)CrossRefGoogle Scholar
  14. 14.
    Martin, R., de Pont, J., Sharrock, T.: Cyclide surfaces in computer aided design. In: Gregory, J.A. (ed.) The mathematics of surfaces, pp. 253–268. Clarendon Press, Oxford (1986)Google Scholar
  15. 15.
    Peternell, M.: Developable surface fitting to point clouds. Comp. Aid. Geom. Des. 21(8), 785–803 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Peternell, M., Pottmann, H.: A Laguerre geometric approach to rational offsets. Comp. Aid. Geom. Des. 15, 223–249 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pottmann, H., Opitz, K.: Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces. Comp. Aid. Geom. Des. 11, 655–674 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pottmann, H., Peternell, M.: Applications of Laguerre geometry in CAGD. Comp. Aid. Geom. Des. 15, 165–186 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pottmann, H., Brell-Cokcan, S., Wallner, J.: Discrete surfaces for architectural design. In: Curve and Surface Design: Avignon 2006, pp. 213–234. Nashboro Press (2006)Google Scholar
  20. 20.
    Pottmann, H., Wallner, J.: The focal geometry of circular and conical meshes. Adv. Comput. Math. (to appear)Google Scholar
  21. 21.
    Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., Wang, W.: Geometry of multi-layer freeform structures for architecture. ACM Trans. Graphics 26(3) (2007)Google Scholar
  22. 22.
    Sachs, H.: Isotrope Geometrie des Raumes. Vieweg (1990)Google Scholar
  23. 23.
    Santalo, L.: Integral Geometry and Geometric Probability. Addison-Wesley, London (1976)zbMATHGoogle Scholar
  24. 24.
    Sauer, R.: Differenzengeometrie. Springer, Heidelberg (1970)zbMATHGoogle Scholar
  25. 25.
    Schneider, R.: Convex bodies: the Brunn- Minkowski theory. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  26. 26.
    Schramm, O.: Circle patterns with the combinatorics of the square grid. Duke Math. J. 86, 347–389 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Schramm, O.: How to cage an egg. Invent. Math. 107, 543–560 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Simon, U., Schwenck-Schellschmidt, A., Viesel, H.: Introduction to the affine differential geometry of hypersurfaces. Lecture Notes. Science Univ. Tokyo (1992)Google Scholar
  29. 29.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes III: Flächentheorie. Math. Zeitschrift 48, 369–427 (1942)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Strubecker, K.: Airy’sche Spannungsfunktion und isotrope Differentialgeometrie. Math. Zeitschrift 78, 189–198 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Strubecker, K.: Über das isotrope Gegenstück z = 32 J(x + iy)2/3 der Minimalfläche von Enneper. Abh. Math. Sem. Univ. Hamburg 44, 152–174 (1975/76)Google Scholar
  32. 32.
    Strubecker, K.: Duale Minimalflächen des isotropen Raumes. Rad JAZU 382, 91–107 (1978)MathSciNetGoogle Scholar
  33. 33.
    Wallner, J., Pottmann, H.: Infinitesimally flexible meshes and discrete minimal surfaces. Monatsh. Math. (to appear)Google Scholar
  34. 34.
    Ziegler, G.: Lectures on Polytopes. Springer, Heidelberg (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Helmut Pottmann
    • 1
  • Yang Liu
    • 2
  1. 1.Geometric Modeling and Industrial Geometry, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 WienAustria
  2. 2.Department of Computer Science, University of Hong KongChina

Personalised recommendations