Genome Mapping and Genomics in Fishes and Aquatic Animals pp 117-133

Part of the Genome Mapping Genomics Animals book series (MAPPANIMAL, volume 2)

European Sea Bass

  • F.A.M. Volckaert
  • C. Batargias
  • A. Canario
  • D. Chatziplis
  • D. Chistiakov
  • C. Haley
  • A. Libertini
  • C. Tsigenopoulos


Aquaculture of European sea bass (Dicentrarchus labrax L.) has taken off in the coastal regions of the Mediterranean Sea and southeastern Atlantic Ocean over the past 25 years and increased to 71,649 metric tons in 2004. Genetic support for this industry was initially limited to cytogenetics and population genetics, but with time it has been complemented with selective breeding, as well as functional and comparative genomics. The haploid genome of sea bass consists of 24 chromosomes, weighing 0.78 pg and containing approximately 1,525 Mb. A number of different types of genetic markers are available. A first-generation linkage map based on 174 microsatellite markers covers 25 linkage groups (815 cM). A draft of an updated linkage map, including 369 microsatellite and AFLP markers, is now available. EST resources based on at least 17 cDNA tissue libraries and surpassing 30,000 sequence traces have been generated. A large insert BAC library has a 13× genomic coverage. Breeding goals have been established and heritability values of various traits measured. Functional genomic analysis in relation to the reproductive biology and stress physiology are in progress. A pilot analysis has detected a QTL for body length on the terminal end of linkage group 1. All these resources bring European sea bass into the group of the top ten genome resource-rich fish species. Additional genomic resources such as EST sequences, macro- and micro-arrays, a second-generation linkage map, and physical maps based on BAC fingerprints and radiation hybrids will become available in the near future. Selective breeding of this species is expected to direct it progressively toward complete domestication.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allegrucci G, Fortunato C, Sbordoni V (1997) Genetic structure and allozyme variation of sea bass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Mar Biol 128:347–358CrossRefGoogle Scholar
  2. Aref’yev VA (1989) Cytogenetic analysis and nuclear organization of the seabass Dicentrarchus labrax. Voprosy Ikhtiologii 5:819–822Google Scholar
  3. Bahri-Sfar L, Lemaire C, Ben Hassine OK, Bonhomme F (2000) Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc R Soc Lond B Biol Sci 267:929–935CrossRefGoogle Scholar
  4. Bahri-Sfar L, Lemaire C, Chatain B, Divanach P, Ben Hassine OK, Bonhomme F (2005) Impact de l’élevage sur la structure génétique des populations méditerranéennes de Dicentrarchus labrax. Aquat Living Res 18:71–76CrossRefGoogle Scholar
  5. Balasubramaniam A, Rigel DF, Chance WT, Fischer JE (1992) Central and peripheral effects of sculpin pancreatic polypeptide and anglerfish peptide Y in rats. Pept Res 5:106–109PubMedGoogle Scholar
  6. Barahona-Fernandes MH, Girin M, Metailler R (1977) Expériences de conditionnement d’alevins du bar (Pisces, Dicentrarchus labrax) à differents aliments composés. Aquaculture 10:53–63CrossRefGoogle Scholar
  7. Barnabé G (1972) Contribution à l’étude de la biologie du loup (Dicentrarchus labrax) de la région de Sète. Thèse 3ème cycle, Université des Sciences et Techniques du LanguedocGoogle Scholar
  8. Barnabé G (1974) Mass rearing of the bass Dicentrarchus labrax L. In: Blaxter JHS (ed) The early life history of fish. Springer, Berlin, pp 749–753Google Scholar
  9. Barnabé G (1986) L’élevage du loup et de la daurade. In: Barnabé G (ed) Aquaculture: technique et documentation. Lavoisier, Paris, pp 627–666Google Scholar
  10. Barnabé G, Rene F (1972) Reproduction contrôlée du loup Dicentrarchus labrax (Linné) et production en masse d’alevins. CR Acad Sci Paris D 275:2741–2744Google Scholar
  11. BASSMAP (2006) Tools for the genetic improvement of sea bass. Construction and preliminary application of a medium density linkage and synteny map, ( EU project Q5RS-2001-01701Google Scholar
  12. Benharrat K, Pasteur N, Siau Y, Bouian A (1983) Polymorphisme biochimique de loups (Dicentrarchus labrax) originaires de quatre populations naturelles et d’un élevage. Recherches biologiques en aquaculture. CNEXO-BNDO, Brest, France 1, pp 1–17Google Scholar
  13. Bertotto D, Libertini A, Francescon A, Barbaro A (2004) Eleven years of experiments in chromosome set manipulation of the European sea bass (Dicentrarchus labrax L.). Abstracts of the aquaculture Europe 2004 conference: biotechnologies for quality, Barcelona, 20–23 Oct 2004Google Scholar
  14. Bertotto D, Cepollaro F, Libertini A, Barbaro A, Francescon A, Belvedere P, Barbaro J, Colombo L (2005) Production of clonal founders in the European sea bass, Dicentrarchus labrax L., by mitotic gynogenesis. Aquaculture 246:115–124CrossRefGoogle Scholar
  15. Blazquez M, Zanuy S, Carrillo M, Piferrer F (1999) Sex ratios in offspring of sex reversed sea bass (Dicentrarchus labrax L.) and the relation between growth and phenotypic sex differentiation. J Fish Biol 55:916–930CrossRefGoogle Scholar
  16. Boutet I, Long Ky CL, Bonhomme F (2006) A transcriptome approach of salinity response in the euryhaline teleost, Dicentrarchus labrax. Gene 379:40–50PubMedCrossRefGoogle Scholar
  17. Caccone A, Allegrucci G, Fortunato C, Sbordoni V (1997) Genetic differentiation within the European sea bass (D. labrax) as revealed by RAPD-PCR assays. J Hered 88:316–324Google Scholar
  18. Cano J, Pretel A, Melendez S, Garcia F, Caputo V, Fenocchio AS, Bertollo LAC (1996) Determination of early stages of sex chromosome differentiation in the sea bass Dicentrarchus labrax L. (Pisces: Perciformes). Cytobios 87:45–59Google Scholar
  19. Carrillo M, Zanuy S, Blasquez M, Ramos J, Piferrer F, Donaldson E (1993) Sex control and ploidy manipulations in sea bass. International conference of aquaculture ’93, EAS special publication 19, Oostende, Belgium, p 512Google Scholar
  20. Carrillo M, Zanuy S, Prat F, Cerda J, Ramos J, Mañanos E, Bromage N (1995) Sea bass (Dicentrarchus labrax). In: Bromage NR, Roberts RJ (eds) Broodstock management and egg and larval quality. Blackwell Science, Oxford, pp 138–168Google Scholar
  21. Castilho R (1998) Genetic analysis of European sea bass (Dicentrarchus labrax L.) from Portuguese waters using allozyme and microsatellite loci. Ph.D. thesis, Institute of Aquaculture, University of StirlingGoogle Scholar
  22. Castilho R, Ciftci Y (2005) Genetic differentiation between close eastern Mediterranean Dicentrarchus labrax (L.) populations. J Fish Biol 67:1746–1752CrossRefGoogle Scholar
  23. Castilho R, McAndrew BJ (1998a) Population structure of seabass in Portugal: evidence from allozymes. J Fish Biol 53:1038–1049CrossRefGoogle Scholar
  24. Castilho R, McAndrew BJ (1998b) Two polymorphic microsatellite markers in the European seabass, Dicentrarchus labrax (L.). Anim Genet 29:151–152Google Scholar
  25. Cataudella S, Civitelli MV, Capanna E (1973) The chromosomes of some Mediterranean teleosts: Scorpaenidae, Serranidae, Labridae, Blenniidae, Gobiidae (Pisces – Scorpaeniformes, Perciformes). Boll Zool 40:385–389Google Scholar
  26. Cerda-Reverter JM, Martinez-Rodriguez G, Anglade I, Kah O, Zanuy S (2000) Peptide YY (PYY) and fish pancreatic peptide Y (PY) expression in the brain of the sea bass (Dicentrarchus labrax) as revealed by in situ hybridization. J Comp Neurol 426:197–208PubMedCrossRefGoogle Scholar
  27. Cesaroni D, Venazetti F, Allegrucci G, Sbordoni V (1997) Mitochondrial DNA length variation and heteroplasmy in natural populations of the European sea bass (Dicentrarchus labrax). Mol Biol Evol 14:560–568Google Scholar
  28. Chatziplis DG, Hamann H, Haley CS (2001) Selection and subsequent analysis of sib pair data for QTL detection. Genet Res 78:177–186PubMedCrossRefGoogle Scholar
  29. Chatziplis DG, Batargias C, Tsigenopoulos CS, Magoulas A, Kollias S, Volckaert FAM, Haley CS (2007) Mapping quantitative trait loci in European sea bass (Dicentrarchus labrax): the BASSMAP pilot study. Aquaculture 272S1:172–182CrossRefGoogle Scholar
  30. Chini V, Rimoldi S, Terova G, Saroglia M, Rossi F, Bernardini G, Gornati R (2006) EST-based identification of genes expressed in the liver of adult seabass (Dicentrarchus labrax, L.). Gene 376:102–106PubMedCrossRefGoogle Scholar
  31. Chistiakov DA, Hellemans B, Tsigenopoulos CS, Law AS, Bartley N, Bertotto D, Libertini A, Kotoulas G, Haley CS, Volckaert FA (2004) Development and linkage relationships for new microsatellite markers of the sea bass (Dicentrarchus labrax L.). Anim Genet 35:3–57CrossRefGoogle Scholar
  32. Chistiakov DA, Hellemans B, Haley CS, Law AS, Tsigenopoulos CS, Kotoulas G, Bertotto D, Libertini A, Volckaert FAM (2005) A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics 170:1821–1826PubMedCrossRefGoogle Scholar
  33. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  34. Ciftci Y, Castilho R, McAndrew BJ (2002) More polymorphic microsatellite markers in the European sea bass (Dicentrarchus labrax L.). Mol Ecol Notes 2:575–576CrossRefGoogle Scholar
  35. Colombo L, Barbaro A, Libertini A, Benedetti P, Francescon A, Lombardo I (1995) Artificial fertilization and induction of triploidy and meiogynogenesis in the European sea bass Dicentrarchus labrax L. J Appl Ichthyol 11:118–125CrossRefGoogle Scholar
  36. Dalla Valle L, Lunardi L, Colombo L, Belvedere P (2002) European sea bass (Dicentrarchus labrax L.) cytochrome P450arom: cDNA cloning, expression and genomic organization. J Steroid Biochem Mol Biol 80:25–34PubMedCrossRefGoogle Scholar
  37. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128PubMedCrossRefGoogle Scholar
  38. Dupont-Nivet M, Vandeputte M, Vergnet A, Merdy O, Haffray P, Chavanne H, Chatain B (2007) Heritabilities and GxE interactions for growth in the European sea bass (Dicentrarchus labrax L.). Aquaculture 272S1:253–254Google Scholar
  39. Ergűden D, Turan C (2005) Examination of genetic and morphologic structure of sea-bass (Dicentrarchus labrax L., 1758) populations in Turkish coastal waters. Turk J Vet Anim Sci 29:727–733Google Scholar
  40. FAO (2006) Cultured aquatic species information programme ( Scholar
  41. Felip A, Piferrer F, Carrillo M, Zanuy S (2002) Growth, gonadal development and sex ratios of meiogynogenetic diploid sea bass. J Fish Biol 61:347–359CrossRefGoogle Scholar
  42. Francescon A, Libertini A, Bertotto D, Barbaro A (2004) Shock timing in mitogynogenesis and tetraploidization of the European sea bass Dicentrarchus labrax. Aquaculture 236:201–209CrossRefGoogle Scholar
  43. Francescon A, Barbaro A, Bertotto D, Libertini A, Cepollaro F, Richard J, Belvedere P, Colombo L (2005) Assessment of homozygosity and fertility in meiotic gynogens of the European sea bass (Dicentrarchus labrax L.). Aquaculture 243:93–102CrossRefGoogle Scholar
  44. Fritsch M (2005) Biology and exploitation of the sea bass Dicentrarchus labrax (L.) in the French fisheries of the English Channel and the Bay of Biscay. Ph.D. thesis, Université de Bretagne OccidentaleGoogle Scholar
  45. Froese R, Pauly D (2006) FishBase World Wide Web electronic publication. URL:, version (03/2006)Google Scholar
  46. García de León FJ, Dallas DJ, Chatain B, Canonne M, Versini JJ, Bonhomme F (1995) Development and use of microsatellite markers in seabass, Dicentrarchus labrax (Linnaeus, 1758) (Perciformes: Serranidae). Mol Mar Biol Biotechnol 4:62–68PubMedGoogle Scholar
  47. García de León FJ, Chikhi L, Bonhomme F (1997) Microsatellite polymorphism and population subdivision in natural populations of European sea bass Dicentrarchus labrax (Linnaeus, 1758). Mol Ecol 6:51–62CrossRefGoogle Scholar
  48. García de León FJ, Canonne M, Quillet E, Bonhomme F, Chatain B (1998) The application of microsatellite markers to breeding programmes in the sea bass, Dicentrarchus labrax. Aquaculture 159:303–316CrossRefGoogle Scholar
  49. Gjerde B (2007) Derivation of economic values using profit of individual animals as a trait. Aquaculture 272S1:263Google Scholar
  50. Gorshkov S, Gorshkova G, Knibb W, Gordin H (1999) Sex ratios and growth performance of European sea bass (Dicentrarchus labrax L.) reared in mariculture in Eilat (Red Sea). Isr J Aquaculture – Bamidgeh 51:91–105Google Scholar
  51. Gorshkov S, Gorshkova G, Meiri I, Gordin H (2004) Culture performance of different strains and crosses of the European sea bass (Dicentrarchus labrax) reared under controlled conditions at Eilat, Israel. J Appl Ichthyol 20:194–203CrossRefGoogle Scholar
  52. Gorshkova G, Gorshkov S, Hadani A, Gordin H, Knibb W (1996) Sex control and gynogenetic production in European sea bass, Dicentrarchus labrax. In: Chatain B, Saroglia M, Sweetman J, Lavens P (eds) Seabass and seabream culture: problems and prospects. Eur Aquaculture Soc, Oostende, Belgium, pp 288–290Google Scholar
  53. Haffray P, Pincent C, Rault P, Coudurier B (2004) Domestication and genetic improvement of French fish farmed broodstocks in SYSAAF. Prod Anim 17:243–252Google Scholar
  54. Harris DL, Newman S (1994) Breeding for profit: synergism between genetic improvement and livestock production (a review). J Anim Sci 72:2178–2200PubMedGoogle Scholar
  55. Hayes B, Goddard ME (2003) Evaluation of marker assisted selection in pig enterprises. Livestock Prod Sci 81:197–211CrossRefGoogle Scholar
  56. Heath SC, Snow GL, Thompson EA, Tseng C, Wijsman EM (1997) MCMC segregation and linkage analysis. Genet Epidemiol 14:1011–1015PubMedCrossRefGoogle Scholar
  57. Jonsson G (1992) Islenskir fiskar. Fiolvi, ReykjavikGoogle Scholar
  58. Katsares V, Triantafyllidis A, Karaiskou N, Abatzopoulos T, Triantaphyllidis C (2005) Genetic structure and discrimination of wild and cultured Greek populations of the European sea bass (Dicentrarchus labrax, Linnaeus 1758). Abstracts of the 12th Panhellenic congress of ichthyology, 13-16 Oct 2005, Drama, Greece, pp 350–353Google Scholar
  59. Knott SA, Elsen JM, Haley CS (1996) Methods for multiple marker mapping of quantitative trait loci in half-sib populations. Theor Appl Genet 93:71–80CrossRefGoogle Scholar
  60. Lambard S, Silandre D, Delalande C, Denis-Galeraud I, Bourguiba S, Carreau S (2005) Aromatase in testis: expression and role in male reproduction. J Steroid Biochem Mol Biol 95:63–69PubMedCrossRefGoogle Scholar
  61. Lemaire C, Allegrucci G, Naciri M, Bahri-Sfar L, Kara H, Bonhomme F (2000) Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)? Mol Ecol 9:457–467PubMedCrossRefGoogle Scholar
  62. Lemaire C, Versini JJ, Bonhomme F (2005) Maintenance of genetic differentiation across a transition zone in the sea: discordance between nuclear and cytoplasmic markers. J Evol Biol 18:70–80PubMedCrossRefGoogle Scholar
  63. Lloris D (2002) A world overview of species of interest to fisheries. Chapter: Dicentrarchus labrax. URL: 3p. FIGIS Species Fact Sheets. Species Identification and Data Programme-SIDP, FAO-FIGISGoogle Scholar
  64. Lumare F, Villani P (1973) Ricerche sulla riproduzione artificiale ed ellevamento delle larve in Dicentrarchus labrax. Boll Pesca Piscic Idrobiol 28:71–75Google Scholar
  65. Marine Genomics Europe (NoE, CT-2003-505403): Implementation of high-throughput genomic approaches to investigate the functioning of marine ecosystems and the biology of marine organisms ( Scholar
  66. Mylonas C, Anezaki L, Divanach P, Zanuy S, Piferrer F, Ron B, Peduel A, Ben Atia I, Gorshkov S, Tandler A (2005) Influence of rearing temperature during the larval and nursery periods on growth and sex differentiation in two Mediterranean strains of Dicentrarchus labrax. J Fish Biol 67:652–668CrossRefGoogle Scholar
  67. Naciri M, Lemaire C, Borsa P, Bonhomme, F (1999) Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). J Hered 90:591–596CrossRefGoogle Scholar
  68. Patarnello T, Bargelloni L, Caldera F, Colombo L (1993) Mitochondrial DNA sequence variation in the European sea bass Dicentrarchus labrax L. (Serranidae): evidence of differential haplotype distribution in natural and farmed population. Mol Mar Biol Biotechnol 2:333–337PubMedGoogle Scholar
  69. Patarnello T, Volckaert FAM, Castilho R (2007) Pillars of Hercules: Is the Atlantic-Mediterranean transition a phylogeographic break? Mol Ecol 16:4426–4444PubMedCrossRefGoogle Scholar
  70. Peruzzi S, Chatain B (2003) Induction of tetraploid gynogenesis in the European sea bass (Dicentrarchus labrax L.). Genetica 119:225–228PubMedCrossRefGoogle Scholar
  71. Peruzzi S, Chatain B, Saillant E, Haffray P, Menu B, Falguiere JC (2004) Production of meiotic gynogenetic and triploid sea bass, Dicentrarchus labrax L. 1: performances, maturation and carcass quality. Aquaculture 230:41–64CrossRefGoogle Scholar
  72. Peruzzi S, Chatain B, Menu B (2005) Flow cytometric determination of genome size in European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), thinlip mullet (Liza ramada), and European eel (Anguilla anguilla). Aquat Living Res 18:77–81CrossRefGoogle Scholar
  73. Pickett GD, Pawson MG (1994) Sea bass: biology, exploitation, and conservation. Chapman & Hall, LondonGoogle Scholar
  74. Piferrer F, Blázquez M, Naivarro L, González A (2005) Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen Comp Endocrinol 142:102–110PubMedCrossRefGoogle Scholar
  75. Quinton CD, McMillan I, Glebe BG (2005) Development of an Atlantic salmon (Salmo salar) genetic improvement program: genetic parameters of harvest body weight and carcass quality traits estimated with animal models. Aquaculture 247:211–217CrossRefGoogle Scholar
  76. Rye M, Refstie T (1995) Phenotypic and genetic parameters of body size traits in Atlantic salmon Salmon salar L. Aquaculture Res 26:875–885CrossRefGoogle Scholar
  77. Saillant E, Chatain B, Fostier A, Przybyla C, Fauvel C (2001a) Parental influence on early development in the European sea bass. J Fish Biol 58:1585–1600CrossRefGoogle Scholar
  78. Saillant E, Fostier A, Menu B, Haffray P, Chatain B (2001b) Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202:371–387CrossRefGoogle Scholar
  79. Saillant E, Dupont-Nivet M, Haffray P, Chatain B (2006) Estimates of heritability and genotype–environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254:139–147CrossRefGoogle Scholar
  80. Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–340PubMedCrossRefGoogle Scholar
  81. Senger F, Priat C, Hitte C, Sarropoulou E, Franch R, Geisler R, Bargelloni L, Power D, Galibert F (2006) The first radiation hybrid map of a perch-like fish: the gilthead seabream (Sparus aurata L). Genomics 87:693–800CrossRefGoogle Scholar
  82. Simpson E, Jones M, Misso M, Hewitt K, Hill R, Maffei L, Carani C, Boon WC (2005) Estrogen, a fundamental player in energy homeostasis. J Steroid Biochem Mol Biol 95:3–8PubMedCrossRefGoogle Scholar
  83. Sola L, Bressanello S, Rossi AR, Iaselli V, Crosetti D, Cataudella S (1993) A karyotype analysis of the genus Dicentrarchus by different staining techniques. J Fish Biol 43:329–337CrossRefGoogle Scholar
  84. Sola L, de Innocentis S, Rossi AR, Crosetti D, Scardi M, Boglione C, Cataudella S (1998) Genetic variability and fingerling quality in wild and reared stocks of European sea bass, Dicentrarchus labrax. Cah Opt Médit 34:273–280Google Scholar
  85. Steine G (2007) Economic values for quality traits, the colour of salmon fillet. Aquaculture 272S1:312–313CrossRefGoogle Scholar
  86. Tortonese E (1986) Moronidae. In: Whitehead PJP, Bauchot ML, Hureau JC, Nielsen J, Tortonese E (eds) Fishes of the north-eastern Atlantic and the Mediterranean, vol 2. UNESCO, Paris, pp 793–796Google Scholar
  87. Tsigenopoulos CS, Hellemans B, Chistiakov DA, Libertini A, Kotoulas G, Volckaert F (2003) Eleven new microsatellites of the sea bass (Dicentrarchus labrax L.). Mol Ecol Notes 3:352–354CrossRefGoogle Scholar
  88. Vandeputte M, Dupont-Nivet M, Chatain B, Chevassus B (2001) Setting up a strain-testing design for the seabass, Dicentrarchus labrax: a simulation study. Aquaculture 202:329–342CrossRefGoogle Scholar
  89. Vandeputte M, Dupont-Nivet M, Merdy O, Haffray P, Chavanne H, Chatain B (2007) Quantitative genetic determinism of sex-ratio in the European seabass (Dicentrarchus labrax l.). Aquaculture 272S1:315CrossRefGoogle Scholar
  90. Venkatesh B, Ningland Y, Brenner S (1999) Late changes in spliceosomal introns define clades in vertebrate evolution. Proc Natl Acad Sci USA 96:10267–10271PubMedCrossRefGoogle Scholar
  91. Vitturi R, Mazzola A, Catalano E, Lo Conte MR (1990) Karyotype analysis, nucleolar organizer regions (NORs), and C-banding pattern of Dicentrarchus labrax (L.) and Dicentrarchus punctatus (Block, 1792) (Pisces, Perciformes) with evidence of chromosomal structural polymorphism. Cytologia 55:425–430Google Scholar
  92. Whitaker HA, McAndrew BJ, Taggart JB (2006) Construction and characterisation of a BAC library for the European sea bass Dicentrarchus labrax. Anim Genet 37:526PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • F.A.M. Volckaert
    • 1
  • C. Batargias
    • 2
    • 3
  • A. Canario
    • 4
  • D. Chatziplis
    • 5
    • 6
  • D. Chistiakov
    • 7
  • C. Haley
    • 8
  • A. Libertini
    • 9
  • C. Tsigenopoulos
    • 10
  1. 1.Laboratory of Animal Diversity and SystematicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Nireus Chios Aquaculture S.A.ChiosGreece
  3. 3.Faculty of Agricultural Technology, Department of Aquaculture and FisheriesTechnological Education Institute of MessolonghiMessolonghiGreece
  4. 4.Centro de Ciencias do MarUniversidade do AlgarveFaroPortugal
  5. 5.Animal Genetics and Breeding Department of Animal Production, Faculty of AgricultureAristotle University of ThessalonikiThessaloniki,Greece
  6. 6.Animal Breeding and Genetics Department of Animal Production School of Agricultural TechnologyAlexander Technological Educational Institute of ThessalonikiSindosGreece
  7. 7.Department of Molecular Diagnostics National Research CenterGosNIIgenetikaMoscowRussian Federation
  8. 8.Division of Genetics and GenomicsRoslin InstituteMidlothianUK
  9. 9.Istituto di Scienze Marine – Biologia del MareCNR–ISMARVeneziaItaly
  10. 10.Institute of Marine Biology and Genetics, Department of Genetics and Molecular BiotechnologyHellenic Centre of Marine ResearchHeraklionGreece

Personalised recommendations