Advertisement

Pea Aphid

  • Jennifer A. Brisson
  • Gregory K. Davis
Part of the Genome Mapping Genomics Animals book series (MAPPANIMAL, volume 1)

Abstract

Aphids are a group of approximately 4,400 species of phloem-feeding insects with mainly temperate distributions. Although best known as agricultural pests, they are also a valuable system for the study of their complex life cycles, host plant specializations, bacterial symbioses, and environmentally induced morphologies (polyphenisms). The pea aphid, Acyrthosiphon pisum, has recently emerged as the aphid of choice for the development of genomic resources. Here we introduce the pea aphid and discuss a number of biological questions for which the species is well suited for study. We then review previous mapping and quantitative trait loci studies, concluding with a discussion of the genomic tools that are currently available including the genome-sequencing project.

Keywords

Quantitative Trait Locus Acyrthosiphon Pisum Russian Wheat Aphid Winged Male Host Plant Specialization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann L, Baumann P, Thao ML (1999) Detection of the messenger RNA transcribed from genes encoding enzymes of amino acid biosynthesis in Buchnera aphidicola (endosymbiont of aphids). Curr Microbiol 38:135–136PubMedCrossRefGoogle Scholar
  2. Birkle LM, Douglas AE (1999) Low genetic diversity among pea aphid (Acyrthosiphon pisum) biotypes of different plant affiliation. Heredity 82:605–612PubMedCrossRefGoogle Scholar
  3. Blackman RL (1987) Reproduction, cytogenetics and development. In: Minks AK, Harrewijn P (eds) Aphids: Their biology, Natural Enemies and Control. Elsevier, Amsterdam, pp 163–195Google Scholar
  4. Blackman RL, Eastop VF (1994) Aphids on the World’s Trees: An Identification and Information Guide. CAB International, Wallingford, UKGoogle Scholar
  5. Blackman RL, Eastop VF (2000) Aphids on the World’s Crops: An Identification and Information Guide. Wiley, Chichester, UKGoogle Scholar
  6. Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL (2003) Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biol 1:70–76CrossRefGoogle Scholar
  7. Braendle C, Caillaud MC, Stern DL (2005a) Genetic mapping of aphicarus: a sex-linked locus controlling a wing polymorphism in the pea aphid (Acyrthosiphon pisum). Heredity 94:435–442PubMedCrossRefGoogle Scholar
  8. Braendle C, Friebe I, Caillaud MC, Stern DL (2005b) Genetic variation for an aphid wing polyphenism is genetically linked to naturally occurring wing polymorphism. Proc R Soc Lond B 272:657–665CrossRefGoogle Scholar
  9. Brisson JA, Davis GK, Stern DL (2007) Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum). Evol Dev 9:338–346PubMedCrossRefGoogle Scholar
  10. Buchner P (1965) Endosymbiosis of Animals with Plant Microorganisms. Interscience Publ, New YorkGoogle Scholar
  11. Caillaud MC, Via S (2000) Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am Nat 156:606–621CrossRefGoogle Scholar
  12. Caillaud MC, Boutin M, Braendle C, Simon J-C (2002) A sex-linked locus controls wing polymorphism in males of the pea aphid, Acyrthosiphon pisum (Harris). Heredity 89:346–352PubMedCrossRefGoogle Scholar
  13. Caillaud MC, Mondor-Genson G, Levine-Wilkinson S, Mieuzet L, Frantz A, Simon JC, D’Acier AC (2004) Microsatellite DNA markers for the pea aphid Acyrthosiphon pisum. Mol Ecol Notes 4:446–448CrossRefGoogle Scholar
  14. Chen DQ, Campbell BC, Purcell AH (1996) A new Rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris). Curr Microbiol 33:123–128PubMedCrossRefGoogle Scholar
  15. Dixon AFG (1998) Aphid Ecology. Chapman & Hall, LondonGoogle Scholar
  16. Dixon AFG, Agarwala BK (1999) Ladybird-induced life-history changes in aphids. Proc R Soc Lond B 266:1549–1553CrossRefGoogle Scholar
  17. Field LM, Foster SP (2002) Amplified esterase genes and their relationship with other insecticide resistance mechanisms in English field populations of the aphids, Myzus persicae (Sulzer). Pest Manag Sci 58:889–894PubMedCrossRefGoogle Scholar
  18. Field LM, Devonshire AL, Forde BG (1988) Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem J 251:309–312PubMedGoogle Scholar
  19. Frantz A, Plantegenest M, Mieuzet L, Simon JC (2006) Ecological specialization correlates with genotypic differentiation in sympatric host-populations of the pea aphid. J Evol Biol 19:392–401PubMedCrossRefGoogle Scholar
  20. Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 67:1284–1291PubMedCrossRefGoogle Scholar
  21. Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A (2002) Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci U S A 99:4454–4458PubMedCrossRefGoogle Scholar
  22. Hales DF, Wilson ACC, Sloane MA, Simon J-C, Legallic J-F, Sunnucks P (2002) Lack of detectable genetic recombination on the X chromosome during the parthenogenetic production of female and male aphids. Genet Res Camb 79:203–209Google Scholar
  23. Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907PubMedCrossRefGoogle Scholar
  24. Heie OE (1980) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. 1. General Part. The families Mindaridae, Hormaphididae, Thelaxidae, Anoeciidae, and Pemphigidae. Fauna Entomol Scandinavica 9Google Scholar
  25. Ishaaya I (2001) Biochemical Sites of Insecticide Action and Resistance. Springer, New YorkGoogle Scholar
  26. Kring JB (1977) Structure of the eyes of the pea aphid, Acyrthosiphon pisum. Ann Entomol Soc Am 70:855–860Google Scholar
  27. Kurokawa T, Yao I, Akimoto S, Hasegawa E (2004) Isolation of six microsatellite markers from the pea aphid, Acyrthosiphon pisum (Homoptera, Aphididae). Mol Ecol Notes 4:523–524CrossRefGoogle Scholar
  28. Lees AD (1990) Dual photoperiodic timers controlling sex and female morph determination in Acyrthosiphon pisum. J Insect Physiol 36:585–591CrossRefGoogle Scholar
  29. Leonardo TE, Mondor EB (2006) Symbiont modifies host life-history traits that affect gene flow. Proc R Soc Lond B 273:1079–1084CrossRefGoogle Scholar
  30. MacKay PA, Wellington WG (1975) A comparison of the reproductive patterns of apterous and alate virginparous Acyrthosiphon pisum (Homoptera: Aphididae). Can Entomol 107:1161–1166Google Scholar
  31. MacKay PA, Reeleder DJ, Lamp RJ (1983) Sexual morph production by apterous and alate viviparous Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Can J Zool 61:952–957CrossRefGoogle Scholar
  32. Minks AK, Harrewijn P (1980) Aphids, their Biology, Natural Enemies, and Control. Elsevier, AmsterdamGoogle Scholar
  33. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids, Acyrthosiphon pisum, under heat stress. Ecol Entomol 27:189–195CrossRefGoogle Scholar
  34. Moran NA (1992) The evolution of aphid life cycles. Annu Rev Entomol 37:321–348CrossRefGoogle Scholar
  35. Moran NA, Kaplan ME, Gelsey MJ, Murphy TG, Scholes EA (1999) Phylogenetics and evolution of the aphid genus Uroleucon based on mitochondrial and nuclear DNA sequences. Syst Entomol 24:85–93CrossRefGoogle Scholar
  36. Moran NA, Russell JA, Koga R, Fukatsu T (2005) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71:3302–3310PubMedCrossRefGoogle Scholar
  37. Morrison WP, Peairs FB (1998) Response model concept and economic impact. In: Quisenberry SS, Peairs FB (eds) Response Model for an Introduced Pest: The Russian Wheat Aphid. Thomas Say Publ in Entomol, Entomol Soc Am, Lanham, MD, USA, pp 1–11Google Scholar
  38. Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, et al (1991) Evidence for the establishment of aphid–eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324PubMedGoogle Scholar
  39. Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid (Acyrthosiphon pisum). J Insect Sci 6:34Google Scholar
  40. Nault LR (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90:521–541Google Scholar
  41. Nault BA, Shah DA, Dillard HR, McFaul AC (2004) Seasonal and spatial dynamics of alate aphid dispersal in snap bean fields in proximity to alfalfa and implications for virus management. Environ Entomol 33:1593–1601CrossRefGoogle Scholar
  42. Oerke EC (1994) Estimated losses in major food and cash crops. In: Oerke EC, Dehne HW, Schonbeck F, Weber A (eds) Crop Production and Crop Protection. Elsevier, Amsterdam, pp 179–296Google Scholar
  43. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807PubMedCrossRefGoogle Scholar
  44. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A 102:12795–12800PubMedCrossRefGoogle Scholar
  45. Orlando E (1974) Sex determination in Megoura viciae Buckton (Homoptera, Aphididae). Monit Zool Ital (NS) 8:61–70Google Scholar
  46. Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167:737–746PubMedCrossRefGoogle Scholar
  47. Podjasek JO, Bosnjak LM, Booker DJ, Mondor EB (2005) Alarm pheromone induces a transgenerational wing polyphenism in the pea aphid, Acyrthosiphon pisum. Can J Zool 83:1138–1141Google Scholar
  48. Robert Y (1987) Dispersion and migration. In: Minks AK, Harrewijn P (eds) Aphids, Their Biology, Natural Enemies, and Control. Elsevier, Amsterdam, pp 299–313Google Scholar
  49. Sabater-Munoz B, Legeai F, Rispe C, Bonhomme J, Dearden P, Dossat C, Duclert A, Gauthier JP, Ducray DG, Hunter WB, Dang P, Kambhampati S, Martinez-Torres D, Cortes T, Moya A, Nakabachi A, Philippe C, Prunier-Leterme N, Rahbe Y, Simon JC, Stern DL, Wincker P, Tagu D (2006) Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genom Biol 7:R21.1–R21.11Google Scholar
  50. Sandstrom J (1994) High variation in host adaptation among clones of pea aphid, Acyrthosiphon pisum on Pisum sativum. Entomol Exp Appl 71:245–256CrossRefGoogle Scholar
  51. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86 PubMedCrossRefGoogle Scholar
  52. Shingleton AW, Sisk GC, Stern DL (2003) Diapause in the pea aphid (Acyrthosiphon pisum) is a slowing but not a cessation of development. BMC Dev Biol 3:7PubMedCrossRefGoogle Scholar
  53. Simon JC, Carre S, Boutin M, Prunier-Leterme N, Sabater-Munoz B, Latorre A, Bournoville R (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc Lond B 270:1703–1712CrossRefGoogle Scholar
  54. Sloggett JJ, Weisser WW (2002) Parasitoids induce production of the dispersal morphs of the pea aphid, Acyrthosiphon pisum. Oikos 98:323–333CrossRefGoogle Scholar
  55. Smith MAH, MacKay PA (1989) Genetic variation in male alary dimorphism in populations of the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 51:125–132CrossRefGoogle Scholar
  56. Sun RY, Robinson AG (1966) Chromosome studies of 50 species of aphids. Can J Zool 44:649–653PubMedCrossRefGoogle Scholar
  57. Sutherland ORW (1969) The role of crowding in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 15:1385–1410CrossRefGoogle Scholar
  58. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989PubMedCrossRefGoogle Scholar
  59. Via S (1991) The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45:827–852CrossRefGoogle Scholar
  60. Via S (1992) Inducing the sexual forms and hatching the eggs of pea aphids. Entomol Exp Appl 65:119–127CrossRefGoogle Scholar
  61. Via S (1994) Population structure and local adaptation in a clonal herbivore. In: Real LA (ed) Ecological Genetics. Princeton University Press, Princeton, NJGoogle Scholar
  62. Via S (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53:1446–1457CrossRefGoogle Scholar
  63. Von Dohlen CD, Teulon DAJ (2003) Phylogeny and historical biogeography of New Zealand indigenous Aphidini aphids (Hemiptera, Aphididae): an hypothesis. Ann Entomol Soc Am 96:107–116CrossRefGoogle Scholar
  64. Wilson ACC, Sunnucks P, Hales DF (1997) Random loss of X chromosome at male determination in an aphid, Sitobion near fragariae, detected using an X-linked polymorphic microsatellite marker. Genet Res 69:233–236CrossRefGoogle Scholar
  65. Wilson ACC, Dunbar HE, Davis GK, Hunter WB, Stern DL, Moran NA (2006) A dual-genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchnera aphidicola. BMC Genomics 7:50PubMedCrossRefGoogle Scholar
  66. Wimmer EA (2003) Applications of insect transgenesis. Nat Rev Genet 4:225–232PubMedCrossRefGoogle Scholar
  67. Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–230PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jennifer A. Brisson
    • 1
  • Gregory K. Davis
    • 2
  1. 1.University of CaliforniaDavisUSA
  2. 2.Department Ecology & Evolutionary BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations