Approximation Algorithms for a Point-to-Surface Registration Problem in Medical Navigation

  • Darko Dimitrov
  • Christian Knauer
  • Klaus Kriegel
  • Fabian Stehn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4613)

Abstract

We present two absolute error approximation algorithms for a point-to-surface registration problem in 3D with applications in medical navigation systems. For a given triangulated or otherwise dense sampled surface \(\mathcal{S}\), a small point set P ⊂ ℝ3 and an error bound μ we present two algorithms for computing the set \(\mathcal{T}\) of rigid motions, so that the directed Hausdorff distance of P transformed by any of these rigid motions to \(\mathcal{S}\) is at most the Hausdorff distance of the best semioptimal matching plus the user chosen error bound μ.

Both algorithms take advantage of so called characteristic points \(S_c \subset \mathcal{S}\) and Pc ⊂ P which are used to reduce the search space significantly. We restrict our attention to scenarios with |Pc| = 2. The algorithms are implemented and compared with respect to their efficiency in different settings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dimitrov, D., Knauer, C., Kriegel, K.: Registration of 3D - Patterns and Shapes with Characteristic Points. In: Proceedings of International Conference on Computer Vision Theory and Applications - VISAPP 2006, pp. 393–400 (2006)Google Scholar
  2. 2.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (1997)MATHGoogle Scholar
  3. 3.
    Hoffmann, F., Kriegel, K., Schönherr, S., Wenk, C.: A simple and robust algorithm for landmark registration in computer assisted neurosurgery. Technical report B 99-21, Freie Universität Berlin (1999)Google Scholar
  4. 4.
    Wang, Y., Peterson, B.S., Staib, L.H.: Shape-Based 3D Surface Correspondence using geodesics and local geometry. In: IEEE Computer Society Conference on computer vision and pattern recognition, vol. II, IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  5. 5.
    Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: Computer Vision and Pattern Recognition Proceedings, IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  6. 6.
    Matthäus, L., Giese, A., Trillenberg, P., Wertheimer, D., Schweikard, A.: Solving the Positioning Problem in TMS GMS CURAC, vol. 1, Doc06 (2006)Google Scholar
  7. 7.
    van Laarhovn, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. D. Reidel Publishing Company, Kluwer (1987)Google Scholar
  8. 8.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. on Pattern Recognition and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  9. 9.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Third Intern. Conference on 3D Digital Imaging and Modeling, pp. 145–152 (2001)Google Scholar
  10. 10.
    Bodensteiner, C., Darolti, C., Schweikard, A.: 3D-reconstruction of bone surfaces from sparse projection data with a robotized c-arm by deformable 2D/3D registration. In: Computer Assisted Radiology and Surgery, Germany (June 27-30, 2007)Google Scholar
  11. 11.
    Clatz, O., Delingette, H., Talos, I., Golby, A.J., Kikinis, R., Jolesz, F.A., Ayache, N., Warfield, S.K.: Robust nonrigid registration to capture brain shift from intraoperative MRI. In: Computer Assisted Radiology and Surgery, Berlin, Germany (June 27-30, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Darko Dimitrov
    • 1
  • Christian Knauer
    • 1
  • Klaus Kriegel
    • 1
  • Fabian Stehn
    • 1
  1. 1.Institut für Informatik, Freie Universität Berlin 

Personalised recommendations