Role of Uric Acid in Multiple Sclerosis

  • S. Spitsin
  • H. Koprowski

In the past decade, a growing number of evidence has implicated free radicals in a variety of pathophysiological conditions including aging, cancer, and coronary heart disease. Analyses of different aspects of multiple sclerosis (MS) pathology with respect to oxidative damage have also revealed evidence of free radical injury to the central nervous system (CNS), although attempts to protect the CNS using various antioxidants have met with only moderate success. Several recent studies have reported lower levels of uric acid (UA), a major scavenger of reactive nitrogen species, in MS patients, while other studies found no such correlation. Here, we discuss these studies as well as current efforts to manipulate serum UA levels in MS patients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 78:6858-6862CrossRefPubMedGoogle Scholar
  2. 2.
    Andrews HE, Nichols PP, Bates D, Turnbull DM (2005) Mitochondrial dysfunction plays a key role in progressive axonal loss in Multiple Sclerosis. Med Hypotheses 64:669-677CrossRefPubMedGoogle Scholar
  3. 3.
    Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, Tawadros R, Koprowski H (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A 92:12041-1205CrossRefPubMedGoogle Scholar
  4. 4.
    Becker BF (1993) Towards the physiological function of uric acid. Free Radic Biol Med 14:615-631CrossRefPubMedGoogle Scholar
  5. 5.
    Becker BF, Kastenbauer S, Kodel U, Kiesl D, Pfister HW (2004) Urate oxidation in CSF and blood of patients with inflammatory disorders of the nervous system. Nucleosides Nucleotides Nucleic Acids 23:1201-1204CrossRefPubMedGoogle Scholar
  6. 6.
    Beckman JS (1991) The double-edged role of nitric oxide in brain function and superoxidemediated injury. J Dev Physiol 15:53-59PubMedGoogle Scholar
  7. 7.
    Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836-844CrossRefPubMedGoogle Scholar
  8. 8.
    Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424-C1437PubMedGoogle Scholar
  9. 9.
    Benzie IF (2000) Evolution of antioxidant defence mechanisms. Eur J Nutr 39:53-61CrossRefPubMedGoogle Scholar
  10. 10.
    Bolanos JP, Heales SJ, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965-1972PubMedCrossRefGoogle Scholar
  11. 11.
    Brenner T, Brocke S, Szafer F, Sobel RA, Parkinson JF, Perez DH, Steinman L (1997) Inhibition of nitric oxide synthase for treatment of experimental autoimmune encephalomyelitis. J Immunol 158:2940-2946PubMedGoogle Scholar
  12. 12.
    Carlson NG, Rose JW (2006) Antioxidants in multiple sclerosis: do they have a role in therapy? CNS Drugs 20:433-441CrossRefPubMedGoogle Scholar
  13. 13.
    Chamorro A, Planas AM, Muner DS, Deulofeu R (2004) Uric acid administration for neuroprotection in patients with acute brain ischemia. Med Hypotheses 62:173-176CrossRefPubMedGoogle Scholar
  14. 14.
    Cheng Y, Jiang DH (1990) Therapeutic effect of inosine in Tourette syndrome and its possible mechanism of action. Chin J Neurol Psychiatry 23:90-93, 126-127Google Scholar
  15. 15.
    Cross AH, Manning PT, Keeling RM, Schmidt RE, Misko TP (1998) Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 88:45-56CrossRefPubMedGoogle Scholar
  16. 16.
    Cross AH, Manning PT, Stern MK, Misko TP (1997) Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 80:121-130CrossRefPubMedGoogle Scholar
  17. 17.
    Cross AR, Jones OT (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057:281-298CrossRefPubMedGoogle Scholar
  18. 18.
    Denicola A, Freeman BA, Trujillo M, Radi R (1996) Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 333:49-58CrossRefPubMedGoogle Scholar
  19. 19.
    Ding M, Zhang M, Wong JL, Rogers NE, Ignarro LJ, Voskuhl RR (1998) Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL /J mice. J Immunol 160:2560-2564PubMedGoogle Scholar
  20. 20.
    Dragan I, Baroga M, Eremia N, Georgescu E (1993) Studies regarding some effects of inosine in elite weightlifters. Rom J Physiol 30:47-50PubMedGoogle Scholar
  21. 21.
    Drulovic J, Dujmovic I, Stojsavljevic N, Mesaros S, Andjelkovic S, Miljkovic D, Peric V, Dragutinovic G, Marinkovic J, Levic Z, Mostarica Stojkovic M (2001) Uric acid levels in sera from patients with multiple sclerosis. J Neurol 248:121-126CrossRefPubMedGoogle Scholar
  22. 22.
    Du Y, Chen CP, Tseng CY, Eisenberg Y, Firestein BL (2007) Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia 55:463-472CrossRefPubMedGoogle Scholar
  23. 23.
    Ducrocq C, Blanchard B, Pignatelli B, Ohshima H (1999) Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci 55:1068-1077CrossRefPubMedGoogle Scholar
  24. 24.
    Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood-brain barrier. Neuropharmacology 40:959-975CrossRefPubMedGoogle Scholar
  25. 25.
    Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261-268CrossRefPubMedGoogle Scholar
  26. 26.
    Gilgun-Sherki Y, Offen D, Panet H, Melamed E, Atlas D (2003) A novel brain-targeted low molecular weight hydrophobic antioxidant compound demonstrates neuroprotective effect in mice with chronic EAE. Multiple Sclerosis 9:S16CrossRefGoogle Scholar
  27. 27.
    Gutman AB (1965) Significance of uric acid as a nitrogenous waste in vertebrate evolution. Arthritis Rheum 8:614-626CrossRefPubMedGoogle Scholar
  28. 28.
    Hall ED (1992) Novel inhibitors of iron-dependent lipid peroxidation for neurodegenerative disorders. Ann Neurol [32 Suppl]:S137-S142Google Scholar
  29. 29.
    Halliwell B, Zhao K, Whiteman M (1999) Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res 31:651-669CrossRefPubMedGoogle Scholar
  30. 30.
    Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52:61-76CrossRefPubMedGoogle Scholar
  31. 31.
    Hediger MA, Johnson RJ, Miyazaki H, Endou H (2005) Molecular physiology of urate transport. Physiology (Bethesda) 20:125-133Google Scholar
  32. 32.
    Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD (2005) Macrophages and neurodegeneration. Brain Res Brain Res Rev 48:185-195CrossRefPubMedGoogle Scholar
  33. 33.
    Hilliker AJ, Duyf B, Evans D, Phillips JP (1992) Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc Natl Acad Sci U S A 89:4343-4347CrossRefPubMedGoogle Scholar
  34. 34.
    Hooper DC, Bagasra O, Marini JC, Zborek A, Ohnishi ST, Kean R, Champion JM, Sarker AB, Bobroski L, Farber JL, Akaike T, Maeda H, Koprowski H (1997) Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 94:2528-2533CrossRefPubMedGoogle Scholar
  35. 35.
    Hooper DC, Kean RB, Scott GS, Spitsin SV, Mikheeva T, Morimoto K, Bette M, Rohrenbeck AM, Dietzschold B, Weihe E (2001) The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent. J Immunol 167:3470-3477PubMedGoogle Scholar
  36. 36.
    Hooper DC, Scott GS, Zborek A, Mikheeva T, Kean RB, Koprowski H, Spitsin SV (2000) Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J 14:691-698PubMedGoogle Scholar
  37. 37.
    Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I, Koprowski H (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95:675-680CrossRefPubMedGoogle Scholar
  38. 38.
    Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, RodriguezIturbe B, Herrera-Acosta J, Mazzali M (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41:1183-1190CrossRefPubMedGoogle Scholar
  39. 39.
    Kanabrocki EL, Ryan MD, Hermida RC, Ayala DE, Scott GS, Murray D, Bremner WF, Third JL, Johnson MC, Foley S, Van Cauteren J, Shah F, Shirazi P, Nemchausky BA, Hooper DC (2004) Altered circadian relationship between serum nitric oxide, carbon dioxide, and uric acid in multiple sclerosis. Chronobiol Int 21:739-758CrossRefPubMedGoogle Scholar
  40. 40.
    Karg E, Klivenyi P, Nemeth I, Bencsik K, Pinter S, Vecsei L (1999) Nonenzymatic antioxidants of blood in multiple sclerosis. J Neurol 246:533-539CrossRefPubMedGoogle Scholar
  41. 41.
    Kastenbauer S, Kieseier BC, Becker BF (2005) No evidence of increased oxidative degradation of urate to allantoin in the CSF and serum of patients with multiple sclerosis. J Neurol 252:611-612CrossRefPubMedGoogle Scholar
  42. 42.
    Kastenbauer S, Koedel U, Becker BF, Pfister HW (2001) Experimental meningitis in the rat: protection by uric acid at human physiological blood concentrations. Eur J Pharmacol 425:149-152CrossRefPubMedGoogle Scholar
  43. 43.
    Kastenbauer S, Koedel U, Pfister HW (1999) Role of peroxynitrite as a mediator of pathophysiological alterations in experimental pneumococcal meningitis. J Infect Dis 180:1164-1170CrossRefPubMedGoogle Scholar
  44. 44.
    Kean RB, Spitsin SV, Mikheeva T, Scott GS, Hooper DC (2000) The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalomyelitis through maintenance of blood-central nervous system barrier integrity. J Immunol 165:6511-6518PubMedGoogle Scholar
  45. 45.
    Knapp CM, Constantinescu CS, Tan JH, McLean R, Cherryman GR, Gottlob I (2004) Serum uric acid levels in optic neuritis. Mult Scler 10:278-280CrossRefPubMedGoogle Scholar
  46. 46.
    Koch M, De Keyser J (2006) Uric acid in multiple sclerosis. Neurol Res 28:316-319CrossRefPubMedGoogle Scholar
  47. 47.
    Kooy NW, Royall JA, Ischiropoulos H, Beckman JS (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16:149-156CrossRefPubMedGoogle Scholar
  48. 48.
    Koprowski H, Spitsin SV, Hooper DC (2000) Prospects for the treatment of multiple sclerosis by raising serum levels of uric acid, a scavenger of peroxynitrite. Ann Neurol 49:139CrossRefGoogle Scholar
  49. 49.
    Kurosaki M, Li Calzi M, Scanziani E, Garattini E, Terao M (1995) Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide. Biochem J 306:225-234PubMedGoogle Scholar
  50. 50.
    Langemann H, Kabiersch A, Newcombe J (1992) Measurement of low-molecular-weight antioxidants, uric acid, tyrosine and tryptophan in plaques and white matter from patients with multiple sclerosis. Eur Neurol 32:248-252CrossRefPubMedGoogle Scholar
  51. 51.
    Levine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci 1012:252-266CrossRefPubMedGoogle Scholar
  52. 52.
    Liu JS, Zhao ML, Brosnan CF, Lee SC (2001) Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 158:2057-2066PubMedGoogle Scholar
  53. 53.
    Lymar S, Hurst J (1995) Rapid reaction between peroxynitrite ion and carbon dioxide: implications for biological activity. J Am Chem Soc 117:8867-8868CrossRefGoogle Scholar
  54. 54.
    Malfroy B, Doctrow SR, Orr PL, Tocco G, Fedoseyeva EV, Benichou G (1997) Prevention and suppression of autoimmune encephalomyelitis by EUK-8, a synthetic catalytic scavenger of oxygen-reactive metabolites. Cell Immunol 177:62-68CrossRefPubMedGoogle Scholar
  55. 55.
    Massie HR, Shumway ME, Whitney SJ (1991) Uric acid content of Drosophila decreases with aging. Exp Gerontol 26:609-614CrossRefPubMedGoogle Scholar
  56. 56.
    McNaughton L, Dalton B, Tarr J (1999) Inosine supplementation has no effect on aerobic or anaerobic cycling performance. Int J Sport Nutr 9:333-344PubMedGoogle Scholar
  57. 57.
    Mostert JP, Ramsaransing GS, Heersema DJ, Heerings M, Wilczak N, De Keyser J (2005) Serum uric acid levels and leukocyte nitric oxide production in multiple sclerosis patients outside relapses. J Neurol Sci 231:41-44CrossRefPubMedGoogle Scholar
  58. 58.
    Oda M, Satta Y, Takenaka O, Takahata N (2002) Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol 19:640-653PubMedGoogle Scholar
  59. 59.
    Ramsaransing GS, Heersema DJ, De Keyser J (2005) Serum uric acid, dehydroepiandrosterone sulphate, and apolipoprotein E genotype in benign vs. progressive multiple sclerosis. Eur J Neurol 12:514-518CrossRefPubMedGoogle Scholar
  60. 60.
    Rentzos M, Nikolaou C, Anagnostouli M, Rombos A, Tsakanikas K, Economou M, Dimitrakopoulos A, Karouli M, Vassilopoulos D (2006) Serum uric acid and multiple sclerosis. Clin Neurol Neurosurg 108:527-531CrossRefPubMedGoogle Scholar
  61. 61.
    Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, van der Pol SM, Hendrikx EM, Dopp ED, Dijkstra CD, Drukarch B, de Vries HE (2006) Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J Immunol 177:2630-2637PubMedGoogle Scholar
  62. 62.
    Scott GS, Cuzzocrea S, Genovese T, Koprowski H, Hooper DC (2005) Uric acid protects against secondary damage after spinal cord injury. Proc Natl Acad Sci U S A 102:3483-8CrossRefPubMedGoogle Scholar
  63. 63.
    Scott GS, Hake P, Kean RB, Virag L, Szabo C, Hooper DC (2001) Role of poly(ADP-ribose) synthetase activation in the development of experimental allergic encephalomyelitis. J Neuroimmunol 117:78-86CrossRefPubMedGoogle Scholar
  64. 64.
    Scott GS, Hooper DC (2001) The role of uric acid in protection against peroxynitrite-mediated pathology. Med Hypotheses 56:95-100CrossRefPubMedGoogle Scholar
  65. 65.
    Scott GS, Kean RB, Fabis MJ, Mikheeva T, Brimer CM, Phares TW, Spitsin SV, Hooper DC (2004) ICAM-1 upregulation in the spinal cords of PLSJL mice with experimental allergic encephalomyelitis is dependent upon TNF-alpha production triggered by the loss of bloodbrain barrier integrity. J Neuroimmunol 155:32-42CrossRefPubMedGoogle Scholar
  66. 66.
    Scott GS, Spitsin SV, Kean RB, Mikheeva T, Koprowski H, Hooper DC (2002) Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A 99:16303-16308CrossRefPubMedGoogle Scholar
  67. 67.
    Sotgiu S, Pugliatti M, Sanna A, Sotgiu A, Fois ML, Arru G, Rosati G (2002) Serum uric acid and multiple sclerosis. Neurol Sci 23:183-188CrossRefPubMedGoogle Scholar
  68. 68.
    Spitsin S, Hooper DC, Leist T, Streletz LJ, Mikheeva T, Koprowskil H (2001) Inactivation of peroxynitrite in multiple sclerosis patients after oral administration of inosine may suggest possible approaches to therapy of the disease. Mult Scler 7:313-319PubMedGoogle Scholar
  69. 69.
    Spitsin S, Hooper DC, Mikheeva T, Koprowski H (2001) Uric acid levels in patients with multiple sclerosis: analysis in mono- and dizygotic twins. Mult Scler 7:165-166PubMedGoogle Scholar
  70. 70.
    Spitsin SV, Scott GS, Kean RB, Mikheeva T, Hooper DC (2000) Protection of myelin basic protein immunized mice from free-radical mediated inflammatory cell invasion of the central nervous system by the natural peroxynitrite scavenger uric acid. Neurosci Lett 292:137-141CrossRefPubMedGoogle Scholar
  71. 71.
    Squadrito GL, Cueto R, Splenser AE, Valavanidis A, Zhang H, Uppu RM, Pryor WA (2000) Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 376:333-337CrossRefPubMedGoogle Scholar
  72. 72.
    Squadrito GL, Pryor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 25:392-403CrossRefPubMedGoogle Scholar
  73. 73.
    Starling RD, Trappe TA, Short KR, Sheffield-Moore M, Jozsi AC, Fink WJ, Costill DL (1996) Effect of inosine supplementation on aerobic and anaerobic cycling performance. Med Sci Sports Exerc 28:1193-1198PubMedGoogle Scholar
  74. 74.
    Szabo C (1996) DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med 21:855-869CrossRefPubMedGoogle Scholar
  75. 75.
    Toncev G (2006) Therapeutic value of serum uric acid levels increasing in the treatment of multiple sclerosis. Vojnosanit Pregl 63:879-882PubMedGoogle Scholar
  76. 76.
    Toncev G, Milicic B, Toncev S, Samardzic G (2002) High-dose methylprednisolone therapy in multiple sclerosis increases serum uric acid levels. Clin Chem Lab Med 40:505-508CrossRefPubMedGoogle Scholar
  77. 77.
    Touil T, Deloire-Grassin MS, Vital C, Petry KG, Brochet B (2001) In vivo damage of CNS myelin and axons induced by peroxynitrite. Neuroreport 12:3637-3644CrossRefPubMedGoogle Scholar
  78. 78.
    van der Veen RC, Hinton DR, Incardonna F, Hofman FM (1997) Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J Neuroimmunol 77:1-7CrossRefPubMedGoogle Scholar
  79. 79.
    Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, Mazzali M, Johnson RJ (2002) Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 40:355-3560CrossRefPubMedGoogle Scholar
  80. 80.
    Whiteman M, Halliwell B (1996) Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid. A comparison with other biological antioxidants. Free Radic Res 25:275-283CrossRefPubMedGoogle Scholar
  81. 81.
    Whiteman M, Ketsawatsakul U, Halliwell B (2002) A reassessment of the peroxynitrite scavenging activity of uric acid. Ann N Y Acad Sci 962:242-259CrossRefPubMedGoogle Scholar
  82. 82.
    Williams MH, Kreider RB, Hunter DW, Somma CT, Shall LM, Woodhouse ML, Rokitski L (1990) Effect of inosine supplementation on 3-mile treadmill run performance and VO2 peak. Med Sci Sports Exerc 22:517-522PubMedGoogle Scholar
  83. 83.
    Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery C Jr, Jones P, Bradley A, Caskey CT (1994) Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci U S A 91:742-746CrossRefPubMedGoogle Scholar
  84. 84.
    Wu XW, Lee CC, Muzny DM, Caskey CT (1989) Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A 86:9412-9416CrossRefPubMedGoogle Scholar
  85. 85.
    Wu XW, Muzny DM, Lee CC, Caskey CT (1992) Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 34:78-84CrossRefPubMedGoogle Scholar
  86. 86.
    Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res 53:613-625CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • S. Spitsin
    • 1
  • H. Koprowski
    • 1
  1. 1.Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations