Low-Power Twiddle Factor Unit for FFT Computation

  • Teemu Pitkänen
  • Tero Partanen
  • Jarmo Takala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4599)


An integral part of FFT computation are the twiddle factors, which, in software implementations, are typically stored into RAM memory implying large memory footprint and power consumption. In this paper, we propose a novel twiddle factor generator based on reduced ROM tables. The unit supports both radix-4 and mixed-radix-4/2 FFT algorithms and several transform lengths. The unit operates at a rate of one factor per clock cycle.


Fast Fourier Transform Lookup Table Twiddle Factor Fast Fourier Transform Computation Fast Fourier Transform Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu, C.S., Wu, A.Y.: Modified vector rotational CORDIC (MVR-CORDIC) algorithm and its application to fft. In: Proc. IEEE ISCAS, Geneva, Switzerland, vol. 4, pp. 529–532 (2000)Google Scholar
  2. 2.
    Xiu, L., You, Z.: A new frequency synthesis method based on flying-adder architecture. IEEE Trans. Circuits Syst. 50(3), 130–134 (2003)CrossRefGoogle Scholar
  3. 3.
    Fliege, N.J., Wintermantel, J.: Complex digital oscillator and FSK modulators. IEEE Trans. Signal Processing 40(2), 333–342 (1992)CrossRefGoogle Scholar
  4. 4.
    Chi, J.C., Chen, S.G.: An efficient FFT twiddle factor generator. In: Proc. European Signal Process. Conf., Vienna, Austria, pp. 1533–1536 (2004)Google Scholar
  5. 5.
    Cohen, D.: Simplified control of FFT hardware. IEEE Trans. Acoust., Speech, Signal Processing 24(6), 577–579 (1976)CrossRefGoogle Scholar
  6. 6.
    Chang, Y., Parhi, K.K.: Efficient FFT implementation using digit-serial arithmetic. In: Proc. IEEE Workshop Signal Process. Syst., Taipei, Taiwan, pp. 645–653. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  7. 7.
    Ma, Y., Wanhammar, L.: A hardware efficient control of memory addressing for high-performance FFT processors. IEEE Trans. Signal Processing 48(3), 917–921 (2000)CrossRefGoogle Scholar
  8. 8.
    Wanhammar, L.: DSP Integrated Circuits. Academic Press, San Diego, CA (1999)Google Scholar
  9. 9.
    Hasan, M., Arslan, T.: FFT coefficient memory reduction technique for OFDM applications. In: Proc. IEEE ICASSP, Orlando, FL, vol. 1, pp. 1085–1088 (2002)Google Scholar
  10. 10.
    Chu, E., George, A.: Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press, Boca Raton, FL (2000)zbMATHGoogle Scholar
  11. 11.
    Pitkänen, T., Mäkinen, R., Heikkinen, J., Partanen, T., Takala, J.: Low-power, high-performance TTA processor for 1024-point fast Fourier transform. In: Vassiliadis, S., Wong, S., Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 227–236. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Pitkänen, T., Mäkinen, R., Heikkinen, J., Partanen, T., Takala, J.: Transport triggered architecture processor for mixed-radix FFT. In: Proc. Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA (2006)Google Scholar
  13. 13.
    Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall, Englewood Cliffs (1975)Google Scholar
  14. 14.
    Granata, J., Conner, M., Tolimieri, R.: Recursive fast algorithms and the role of the tensor product. IEEE Trans. Signal Processing 40(12), 2921–2930 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Akopian, D., Takala, J., Astola, J., Saarinen, J.: Multistage interconnection networks for parallel Viterbi decoders. IEEE Trans. Commun. 51(9), 1536–1545 (2003)CrossRefGoogle Scholar
  16. 16.
    Bóo, M., Argüello, F., Bruguera, J., Doallo, R., Zapata, E.: High-performance VLSI architecture for the Viterbi algorithm. IEEE Trans. Commun. 45(2), 168–176 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Teemu Pitkänen
    • 1
  • Tero Partanen
    • 1
  • Jarmo Takala
    • 1
  1. 1.Tampere University of Technology, P.O. Box 553, FIN-33101 TampereFinland

Personalised recommendations