Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications

  • S. Faÿ
  • A. Shah
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 104)

Metalorganic chemical vapor deposition of ZnO films (MOCVD) [1] started to be comprehensively investigated in the 1980s, when thin film industries were looking for ZnO deposition processes especially useful for large-scale coatings at high growth rates. Later on, when TCO for thin film solar cells started to be developed, another advantage of growing TCO films by the CVD process has been highlighted: the surface roughness. Indeed, a large number of studies on CVD ZnO revealed that an as-grown rough surface cn be obtained with this deposition process [2–4]. A rough surface induces a light scattering effect, which can significantly improve light trapping (and therefore current photo-generation) within thin film silicon solar cells. The CVD process, indeed, directly leads to as-grown rough ZnO films without any post-etching step (the latter is often introduced to obtain a rough surface, when working with as-deposited flat sputtered ZnO). This fact could turn out to be a significant advantage when upscaling the manufacturing process for actual commercial production of thin film solar modules. The zinc and oxygen sources for CVD growth of ZnO films are given in Table 6.1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kern, R.C. Heim, J. Electrochem. Soc. 117, 562 (1970)CrossRefGoogle Scholar
  2. 2.
    S. Faÿ, S. Dubail, U. Kroll, J. Meier, Y. Ziegler, A. Shah, in Proc. of the 16th European Photovoltaic Solar Energy Conference (Glasgow, UK, 2000), pp. 361-364Google Scholar
  3. 3.
    S. Faÿ, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Sol. Energy Mater. & Sol. Cells 86, 385 (2005)CrossRefGoogle Scholar
  4. 4.
    W.W. Wenas, Jpn. J. Appl. Phys. 30, L441 (1991)CrossRefADSGoogle Scholar
  5. 5.
    F.T.J. Smith, Appl. Phys. Lett. 43, 1108 (1983)CrossRefADSGoogle Scholar
  6. 6.
    S.K. Ghandhi, R.J. Field, J.R. Shealy, Appl. Phys. Lett. 37, 449 (1980)CrossRefADSGoogle Scholar
  7. 7.
    Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, J. Cryst. Growth 221, 431 (2000)CrossRefADSGoogle Scholar
  8. 8.
    J.R. Shealy, B.J. Baliga, R.J. Field, S.K. Ghandhi, J. Electrochem. Soc. 128, 558 (1981)CrossRefGoogle Scholar
  9. 9.
    A.P. Roth, D.F. Williams, J. Appl. Phys. 52, 6685 (1981)CrossRefADSGoogle Scholar
  10. 10.
    J. Hu, R.G. Gordon, J. Appl. Phys. 72, 5381 (1992)CrossRefADSGoogle Scholar
  11. 11.
    C.K. Lau, S.K. Tiku, K.M. Lakin, J. Electrochem. Soc. 127, 1843 (1980)CrossRefGoogle Scholar
  12. 12.
    P.J. Wright, R.J.M. Griffiths, B. Cockayne, J. Cryst. Growth 66, 26 (1984)CrossRefADSGoogle Scholar
  13. 13.
    P. Souletie, S. Bethke, B.W. Wessels, H. Pan, J. Cryst. Growth 86, 248 (1988)CrossRefGoogle Scholar
  14. 14.
    S. Oda, H. Tokunaga, N. Kitajima, J.I. Hanna, I. Shimizu, H. Kokado, Jpn. J. Appl. Phys. 24, 1607 (1985)CrossRefADSGoogle Scholar
  15. 15.
    J. Hu, R.G. Gordon, Solar Cells 30, 437 (1991)CrossRefGoogle Scholar
  16. 16.
    M.L. Addonizio, A. Antonaia, S. Aprea, R.D. Rosa, G. Nobile, A. Rubino, E. Terzini, in Proc. of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion (Vienna, Austria, 1998), pp. 709-712Google Scholar
  17. 17.
    S. Faÿ, L’Oxyde de Zinc par Dépôt Chimique en Phase Vapeur comme Contact Electrique Transparent et Diffuseur de Lumière pour les Cellules Solaires. Ph.D. thesis, Ecole Polytechnique Fédéral de Lausanne (2003)Google Scholar
  18. 18.
    W.W. Wenas, A. Yamada, K. Takahashi, M. Yoshino, M. Konagai, J. Appl. Phys. 70, 7119 (1991)CrossRefADSGoogle Scholar
  19. 19.
    C.G.V. de Walle, Phys. Rev. Lett. 85, 1012 (2000)CrossRefADSGoogle Scholar
  20. 20.
    S.Y. Myong, K.S. Lim, Appl. Phys. Lett. 82, 3026 (2003)CrossRefADSGoogle Scholar
  21. 21.
    K. Adachi, K. Sato, Y. Gotoh, H. Nishimura, in Proc. of the 22nd IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1991), pp. 1385-1388Google Scholar
  22. 22.
    N.D. Kumar, M.N. Kamalasanan, S. Chandra, Appl. Phys. Lett. 65, 1373 (1994)CrossRefADSGoogle Scholar
  23. 23.
    A. Yamada, W.W. Wenas, M. Yoshino, M. Konagai, K. Takahashi, in Proc. of the 22nd IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1991), pp. 1236-1241Google Scholar
  24. 24.
    J. Hu, R.G. Gordon, Mater. Res. Soc. Symp. Proc. 202, 457 (1991)Google Scholar
  25. 25.
    K. Haga, P.S. Wijesena, H. Watanabe, Appl. Surf. Sci. 169/170, 504 (2001)CrossRefADSGoogle Scholar
  26. 26.
    J.A.A. Selvan, H. Keppner, U. Kroll, J. Cuperus, A. Shah, T. Adatte, N. Randall, Mater. Res. Soc. Symp. Proc. 472, 39 (1997)Google Scholar
  27. 27.
    J. Hu, R.G. Gordon, J. Appl. Phys. 71, 880 (1992)CrossRefADSGoogle Scholar
  28. 28.
    J. Hu, R.G. Gordon, Mater. Res. Soc. Symp. Proc. 242, 743 (1992)Google Scholar
  29. 29.
    J. Hu, R.G. Gordon, J. Electrochem. Soc. 139, 2014 (1992)CrossRefADSGoogle Scholar
  30. 30.
    A.L. Fahrenbruch, R.H. Bube, Fundamentals of Solar Cells (Academic Press, New York, 1983)Google Scholar
  31. 31.
    K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)CrossRefADSGoogle Scholar
  32. 32.
    J. Hu, R.G. Gordon, Mater. Res. Soc. Symp. Proc. 283, 891 (1993)Google Scholar
  33. 33.
    J. Steinhauser, S.Y. Myong, S. Faÿ, R. Schlüchter, E. Vallat-Sauvain, A. Rüfenacht, A. Shah, C. Ballif, Mater. Res. Soc. Symp. Proc. 928, GG12.05 (2006)Google Scholar
  34. 34.
    S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, A. Shah, Solar Energy Materials and Solar Cells 90, 2960 (2006)CrossRefGoogle Scholar
  35. 35.
    S. Faÿ, J. Steinhauser, R. Schlüchter, L. Feitknecht, C. Ballif, A. Shah, in Proc. of the 15th International Photovoltaic Science and Engineering Conference (Shanghai, China, 2005), pp. 559-560Google Scholar
  36. 36.
    K. Tabuchi, W.W. Wenas, M. Yoshino, A. Yamada, M. Konagai, K. Takahashi, in Proc. of the 11th European Photovoltaic Solar Energy Conference (Montreux, Switzerland, 1992), pp. 529-532Google Scholar
  37. 37.
    K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001)CrossRefADSGoogle Scholar
  38. 38.
    T. Minami, MRS Bulletin 25(Aug), 38 (2000)Google Scholar
  39. 39.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefADSGoogle Scholar
  40. 40.
    T.S. Moss, Proc. Phys. Soc. London B 76, 775 (1954)CrossRefADSGoogle Scholar
  41. 41.
    A.P. Roth, J.B. Webb, D.F. Williams, Solid State Commun. 39, 1269 (1981)CrossRefADSGoogle Scholar
  42. 42.
    A.P. Roth, J.B. Webb, D.F. Williams, Phys. Rev. B 25, 7836 (1982)CrossRefADSGoogle Scholar
  43. 43.
    N. Mott, Metal Insulator Transitions (Barns and Noble Books, New York, 1974)Google Scholar
  44. 44.
    S.C. Jain, J.M. McGregor, D.J. Roulston, J. Appl. Phys. 68, 3747 (1990)CrossRefADSGoogle Scholar
  45. 45.
    B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37, 10244 (1988)CrossRefADSGoogle Scholar
  46. 46.
    M. Shimizu, H. Kamei, M. Tanizawa, T. Shiosaki, A. Kawabata, J. Cryst. Growth 89, 365 (1988)CrossRefADSGoogle Scholar
  47. 47.
    M. Shimizu, T. Katayama, Y. Tanaka, T. Shiosaki, A. Kawabata, J. Cryst. Growth 101, 171 (1990)CrossRefADSGoogle Scholar
  48. 48.
    A. Yamada, W.W. Wenas, M. Yoshino, M. Konagai, K. Takahashi, Jpn. J. Appl. Phys. 30, L1152 (1991)CrossRefADSGoogle Scholar
  49. 49.
    Y.J. Kim, H.J. Kim, Mater. Lett. 21, 351 (1994)CrossRefGoogle Scholar
  50. 50.
    T. Shiosaki, T. Yamamoto, M. Yagi, A. Kawabata, Appl. Phys. Lett. 39, 399 (1981)CrossRefADSGoogle Scholar
  51. 51.
    R. Groenen, J. Löffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. chropp, M.C.M. van de Sanden, Thin Solid Films 392, 226 (2001)CrossRefADSGoogle Scholar
  52. 52.
    J. Löffler, R.E.I. Schropp, R. Groenen, M.C.M. van de Sanden, in Proc. of the 28th IEEE Photovoltaic Specialists Conference (Anchorage, USA, 2000), pp. 892-895Google Scholar
  53. 53.
    J. Löffler, Transparent Conductive Oxides for Thin-Film Silicon Solar Cells. Ph.D. thesis, University of Utrecht (2005)Google Scholar
  54. 54.
    D. Pier, K. Mitchell, in Proc. of the 9th European PV Solar Energy Conference (Freiburg, Germany, 1989), pp. 488-489Google Scholar
  55. 55.
    B. Sang, Y. Nagoya, K. Kushiya, O. Yamase, Sol. Energy Mater. & Solar Cells 75,179 (2003)CrossRefGoogle Scholar
  56. 56.
    J. Steinhauser, L. Feitknecht, S. Faÿ, R. Schlüchter, J. Springer, A. Shah, C. Ballif, in Proc. of the 20th European Photovoltaic Solar Energy Conference (Barcelona, Spain, 2005), p. 1608Google Scholar
  57. 57.
    L.C. Olsen, H. Aguilar, F.W. Addis, W. Lei, J. Li, in Proc. of the 25th IEEE Photovoltaic Specialists Conference (Wahington D.C., USA, 1996), pp. 997-1000Google Scholar
  58. 58.
    J. Meier, S. Dubail, D. Fischer, J.A.A. Selvan, N. Pellaton-Vaucher, R. Platz, C. Hof, R. Flückiger, U. Kroll, N. Wyrsch, P. Torres, H. Keppner, A. Shah, K.D. Ufert, in Proc. of the 13th European Photovoltaic Solar Energy Conference (Nice, France, 1995), pp. 1445-1450Google Scholar
  59. 59.
    R.G. Gordon, in NREL/SNL Photovoltaics Program Review, ed. by C.E. Witt, M. Al-Jassim, J.M. Gee (AIP Press, New York, 1997), pp. 39-48Google Scholar
  60. 60.
    L. Feitknecht, J. Steinhauser, R. Schlüchter, S. Faÿ, D. Dominé, E. Vallat-Sauvain, F. Meillaud, C. Ballif, A. Shah, in Proc. of the 15th International Photovoltaic Science and Engineering Conference (Shanghai, China, 2005), pp. 473-474Google Scholar
  61. 61.
    R.R. Arya, T. Lommasson, B. Fieselmann, L. Russell, L. Carr, A. Catalano, in Proc. of the 22nd IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1991), pp. 903-906Google Scholar
  62. 62.
    R.G. Dhere, K. Ramanathan, T.J. Coutts, B.M. Basol, V.K. Kapur, in Proc. of the 22nd IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1991), pp. 1077-1081Google Scholar
  63. 63.
    D. Pier. U.S. Patent 5,078,803 (1992)Google Scholar
  64. 64.
    P.S. Vijayakumar, K.A. Blaker, R.D. Wieting, B. Wong, A. Halani, C. Park. U.S. Patent 4,751,149 (1988)Google Scholar
  65. 65.
    R.D. Wieting, R.R. Potter. U.S. Patent 4,612,411 (1986)Google Scholar
  66. 66.
    R.D. Wieting, in Proc. of the 29th IEEE Photovoltaic Specialist Conference (New Orleans, USA, 2002), p. 478Google Scholar
  67. 67.
    L.C. Olsen, W. Lei, F.W. Addis, W.N. Shfarman, M.A. Contreras, K. Ramanathan, in Proc. of the 26th IEEE Photovoltaic Specialists Conference (Anaheim, USA, 1997), p. 363Google Scholar
  68. 68.
    E. Terzini, A. Antonaia, P. Thilakan, S. Aprea, I. Luck, in Proc. of the 16th European Photvoltaic Solar Energy Conference (Glasgow, UK, 2000), p. 706Google Scholar
  69. 69.
    S. Hegedus, W. Buchanan, X. Liu, R.G. Gordon, in Proc. of the 25th IEEE Photovoltaic Specialists Conference (Washington D.C., USA, 1996), pp. 1129-1132Google Scholar
  70. 70.
    W.W. Wenas, A. De, A. Yamada, M. Konagai, K. Takahashi, Sol. Energy Mater. & Solar Cells 34, 313 (1994)CrossRefGoogle Scholar
  71. 71.
    W.W. Wenas, K. Dairiki, A. Yamada, M. Konagai, K. Takahashi, J.H. Jang, K.S. Lim, in Proc. of the 1st World Conference on Photovoltaic Energy Conversion (Waikaloa, USA, 1994), pp. 413-416CrossRefGoogle Scholar
  72. 72.
    W.W. Wenas, M. Konagai, in Proc. of the 29th IEEE Photovoltaic Specialist Conference (New Orleans, USA, 2002), pp. 1130-1133Google Scholar
  73. 73.
    B. Sang, K. Dairiki, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 38, 4983 (1999)CrossRefADSGoogle Scholar
  74. 74.
    J. Meier, U. Kroll, S. Dubail, S. Golay, S. Faÿ, J. Dubail, A. Shah, in Proc. of the 28th IEEE Photovoltaic Specialists Conference (Anchorage, USA, 2000), pp. 746-749Google Scholar
  75. 75.
    J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, A. Shah, Sol. Energy Mater. & Solar Cells 74, 457 (2002)CrossRefGoogle Scholar
  76. 76.
    J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, A. Shah, in Proc. of the 3rd World Conference and Exhibition on Photovoltaic Solar Energy Conversion (Osaka, Japan, 2003), pp. 2801-2805Google Scholar
  77. 77.
    J. Bauer, H. Calwer, P. Marklstorfer, P. Milla, F.W. Schulze, K.D. Ufert, J. Non-Cryst. Solids 164-166, 685 (1993)CrossRefADSGoogle Scholar
  78. 78.
    U. Kroll, in Proc. of the 21st European Photovoltaic Solar Energy Conference (Dresden, Germany, 2006), pp. 1546-1551Google Scholar
  79. 79.
    J. Meier, U. Kroll, J. Spitznagel, S. Benagli, A. Hügli, T. Roschek, C. Ellert, M. Poppeller, G. Androutsopoulos, D. Borello, W. Stein, O. Kluth, M. Nagel, C. Bücher, L. Feitknecht, G. Büchel, J. Springer, A. Büchel, in Proc. of the 20th European Photovoltaic Solar Energy Conference and Exhibition (Barcelona, Spain, 2005), p. 1503Google Scholar
  80. 80.
    J. Bailat, E. Vallat-Sauvain, L. Feitknecht, C. Droz, A. Shah, J. Non-Cryst. Solids 299-302, 1219 (2002)CrossRefADSGoogle Scholar
  81. 81.
    E. Vallat-Sauvain, S. Faÿ, S. Dubail, J. Meier, J. Bailat, U. Kroll, A. Shah, Mater. Res. Soc. Symp. Proc. 664, A15.3.1 (2001)Google Scholar
  82. 82.
    Y. Nasuno, M. Kondo, A. Matsuda, Sol. Energy Mater. & Solar Cells 74, 497 (2002)CrossRefGoogle Scholar
  83. 83.
    J. Bailat, D. Dominé, R. Schlüchter, J. Steinhauser, S. Faÿ, F. Freitas, C. Bucher, L. Feitknecht, X. Niquille, R. Tscharner, A. Shah, C. Ballif, in Proc. of the 4th World Conference on Photovoltaic Energy Conversion (Waikaloa, USA, 2006), pp. 1533-1536CrossRefGoogle Scholar
  84. 84.
    B. Sang, K. Kushiya, D. Okumura, O. Yamase, Sol. Energy Mater. & Solar Cells 67, 237 (2001)CrossRefGoogle Scholar
  85. 85.
    R. Groenen, J.L. Linden, H.R.M. Van Lierop, D.C. Schram, A.D. Kuypers, M.C.M. Van de Sanden, Applied Surface Science 173, 40 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • S. Faÿ
    • 1
  • A. Shah
    • 1
  1. 1.Institute of Microtechnology (IMT)University of NeuchatelNeuchatelSwitzerland

Personalised recommendations