System Description: E- KRHyper

  • Björn Pelzer
  • Christoph Wernhard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4603)

Abstract

The E-KRHyper system is a model generator and theorem prover for first-order logic with equality. It implements the new E-hyper tableau calculus, which integrates a superposition-based handling of equality into the hyper tableau calculus. E-KRHyper extends our previous KRHyper system, which has been used in a number of applications in the field of knowledge representation. In contrast to most first order theorem provers, it supports features important for such applications, for example queries with predicate extensions as answers, handling of large sets of uniformly structured input facts, arithmetic evaluation and stratified negation as failure. It is our goal to extend the range of application possibilities of KRHyper by adding equality reasoning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgartner, P., Furbach, U., Pelzer, B.: Hyper Tableau with Equality. In: Fachberichte Informatik 12–2007, Universität Koblenz-Landau (2007)Google Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Chapter 11: Reasoning in Saturation-Based Theorem Proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction – A Basis for Applications, vol. I, pp. 352–397. Kluwer, Dordrecht (1998)Google Scholar
  3. 3.
    Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Wernhard, C.: System Description: KRHyper. In: Fachberichte Informatik 14-2003, Universität Koblenz Landau (2003)Google Scholar
  5. 5.
    Baumgartner, P., Furbach, U.: Living Books, Automated Deduction and other Strange Things. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 255–274. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Baumgartner, P., Furbach, U., Gross-Hardt, M., Sinner, A.: Living Book: deduction, slicing, and interaction. J. of Autom. Reasoning 32(3), 259–286 (2004)CrossRefGoogle Scholar
  7. 7.
    Baumgartner, P., Furbach, U., Gross-Hardt, M., Kleemann, T., Wernhard, C.: KRHyper Inside - Model Based Deduction in Applications. In: Baader, F. (ed.) Automated Deduction – CADE-19. LNCS (LNAI), vol. 2741, Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Baumgartner, P., Furbach, U., Gross-Hardtand, M., Kleemann, T.: Model Based Deduction for Database Schema Reasoning. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 168–182. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Baumgartner, P., Burchardt, A.: Logic Programming Infrastructure for Inferences on FrameNet. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 591–603. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Baumgartner, P., Suchanek, F.M.: Automated Reasoning Support for First-Order Ontologies. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 18–32. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Baumgartner, P., Mediratta, A.: Improving Stable Models Based Planning by Bidirectional Search. In: International Conference on Knowledge Based Computer Systems (KBCS), Hyderabad, India (2004)Google Scholar
  12. 12.
    Kleemann, T., Sinner, A.: KRHyper - In Your Pocket, System Description. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Baumgartner, P., Schmidt, R.: Blocking and Other Enhancements of Bottom-Up Model Generation Methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Deransart, P., et al.: Prolog: The standard: reference manual. Berlin (1996)Google Scholar
  15. 15.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443. Elsevier and MIT Press (2001)Google Scholar
  16. 16.
    Ullman, J.D.: Principles of Database and Knowledge-Base Bystems, Rockville, Maryland (1989)Google Scholar
  17. 17.
    Manthey, R., Bry, F.: SATCHMO: A theorem prover implemented in Prolog. In: Lusk, E.R., Overbeek, R. (eds.) 9th International Conference on Automated Deduction. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  18. 18.
    Weidenbach, C.: Combining Superposition, Sorts and Splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, North Holland (2001)Google Scholar
  19. 19.
    Schütz, H., Geisler, T.: Efficient model generation through compilation. In: McRobbie, M.A., Slaney, J.K. (eds.) Automated Deduction - Cade-13. LNCS, vol. 1104, pp. 433–447. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Hasegawa, R., Fujita, H., Koshimura, M.: MGTP: A Model Generation Theorem Prover — its advanced features and applications. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 1–15. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    de Nivelle, H., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite Model Search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Niemelä, I., Simons, P.: Smodels – An implementation of the stable model and well-founded semantics for normal logic programs. In: Dix, J., Furbach, U., Nerode, A. (eds.) Proc. of the 4th Int. Conf. on Logic Programming and Non-Monotonic Reasoning, pp. 420–429 (1997)Google Scholar
  23. 23.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning. INFSYS RR-1843-02-14, Technische Universität Wien (2002)Google Scholar
  24. 24.
    Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48 (2006)MATHMathSciNetGoogle Scholar
  25. 25.
    McCune, W.: OTTER 3.3 Reference Manual. Argonne National Laboratory, Argonne, Illinois, ANL/MCS-TM-263 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Björn Pelzer
    • 1
  • Christoph Wernhard
    • 1
  1. 1.Universität Koblenz-Landau, KoblenzGermany

Personalised recommendations