Hyper Tableaux with Equality

  • Peter Baumgartner
  • Ulrich Furbach
  • Björn Pelzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4603)


In most theorem proving applications, a proper treatment of equational theories or equality is mandatory. In this paper we show how to integrate a modern treatment of equality in the hyper tableau calculus. It is based on splitting of positive clauses and an adapted version of the superposition inference rule, where equations used for paramodulation are drawn (only) from a set of positive unit clauses, the candidate model. The calculus also features a generic, semantically justified simplification rule which covers many redundancy elimination techniques known from superposition theorem proving. Our main results are soundness and completeness, but we briefly describe the implementation, too.


Inference Rule Ground Instance Unit Clause Ground Clause Tableau Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckert, B.: Semantic Tableaux With Equality. Journal of Logic and Computation 7(1), 39–58 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. Baumgartner, P., Furbach, U.: Automated Deduction Techniques for the Management of Personalized Documents. Annals of Mathematics and Artificial Intelligence 38(1) (2003)Google Scholar
  3. Baumgartner, P., Furbach, U., Gross-Hardt, M., Sinner, A.: Living Book – Deduction, Slicing, and Interaction. J. of Aut. Reasoning 32(3) (2004)Google Scholar
  4. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, Springer, Heidelberg (1996)Google Scholar
  5. Bachmair, L., Ganzinger, H.: Chapter 11: Equational Reasoning in Saturation-Based Theorem Proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction. A Basis for Applications, vol. 1, Kluwer, Dordrecht (1998)Google Scholar
  6. Baumgartner, P., Schmidt, R.: Blocking and Other Enhancements for Bottom-up Model Generation Methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus with Equality. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)Google Scholar
  8. Degtyarev, A., Voronkov, A.: Equality Elimination for the Tableau Method. In: Limongelli, C., Calmet, J. (eds.) DISCO 1996. LNCS, vol. 1128, Springer, Heidelberg (1996)Google Scholar
  9. Degtyarev, A., Voronkov, A.: What you Always Wanted to Know About Rigid E-Unification. Journal of Automated Reasoning 20(1), 47–80 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. Furbach, U., Obermaier, C.: Applications of Automated Reasoning. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. Giese, M.: Incremental Closure of Free Variable Tableaux. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. Giese, M.: A Model Generation Style Completeness Proof For Constraint Tableaux With Superposition. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. Giese, M.: Simplification Rules for Constrained Formula Tableaux. In: Mayer, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, Springer, Heidelberg (2003)Google Scholar
  14. Letz, R., Mayr, K., Goller, C.: Controlled Integrations of the Cut Rule into Connection Tableau Calculi. J. of Aut. Reasoning 13 (1994)Google Scholar
  15. Letz, R., Stenz, G.: Integration of Equality Reasoning into the Disconnection Calculus. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, Springer, Heidelberg (2002)Google Scholar
  16. Manthey, R., Bry, F.: SATCHMO: a Theorem Prover Implemented in Prolog. In: Lusk, E.R., Overbeek, R. (eds.) 9th International Conference on Automated Deduction. LNCS, vol. 310, Springer, Heidelberg (1988)CrossRefGoogle Scholar
  17. McCune, W.: Experiments with Discrimination-Tree Indexing and Path Indexing for Term Retrieval. J. of Aut. Reasoning 9(2), 147–167 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. Nieuwenhuis, R., Rubio, A.: Paramodulation-based Theorem Proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Elsevier and MIT Press (2001)Google Scholar
  19. Pelzer, B., Wernhard, C.: System Description: E-KRHyper. In: Pfenning, F. (ed.) CADE-21. LNCS, Springer, Heidelberg (2007)Google Scholar
  20. Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48 (2006)zbMATHMathSciNetGoogle Scholar
  21. Weidenbach, C.: Combining Superposition, Sorts and Splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning. North Holland (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Peter Baumgartner
    • 1
  • Ulrich Furbach
    • 2
  • Björn Pelzer
    • 2
  1. 1.NICTA, CanberraAustralia
  2. 2.Universität Koblenz-Landau, KoblenzGermany

Personalised recommendations