Certified Size-Change Termination

  • Alexander Krauss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4603)

Abstract

We develop a formalization of the Size-Change Principle in Isabelle/HOL and use it to construct formally certified termination proofs for recursive functions automatically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archive of Formal Proofs. http://afp.sourceforge.net/
  2. 2.
  3. 3.
    Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bertot, Y., Castéran, P.: Interactive theorem proving and program development: Coq’Art: the calculus of inductive constructions. In: Texts in theoretical comp. science, Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Blanqui, F., Coupet-Grimal, S., Delobel, W., Hinderer, S., Koprowski, A.: CoLoR, a Coq library on rewriting and termination. In: Geser, A., Søndergaard, H. (eds.) Eighth International Workshop on Termination, WST 2006, Seattle, WA, USA (2006)Google Scholar
  6. 6.
    Bulwahn, L., Krauss, A., Nipkow, T.: Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL. TPHOLs 2007 (to appear, 2007)Google Scholar
  7. 7.
    Gordon, M., Melham, T.: Introduction to HOL: A theorem proving environment for higher order logic. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  8. 8.
    Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Haftmann, F., Nipkow, T.: A design for a generic code generator for the Isabelle/HOL system, Manuscript (2007)Google Scholar
  10. 10.
    Harrison, J.: The HOL Light theorem prover. http://www.cl.cam.ac.uk/users/jrh/hol-light
  11. 11.
    Kaufmann, M., Manolios, P., Moore, J S.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Boston (2000)Google Scholar
  12. 12.
    Kozen, D.: On Kleene algebras and closed semirings. In: Rovan, B. (ed.) Mathematical Foundations of Computer Science 1990. LNCS, vol. 452, pp. 26–47. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 589–603. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: ACM Symposium on Principles of Prog. Languages, pp. 81–92 (2001)Google Scholar
  15. 15.
    Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  17. 17.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) Automated Deduction - CADE-11. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  18. 18.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York (1994)MATHGoogle Scholar
  19. 19.
    Schirmer, N.: A verification environment for sequential imperative programs in Isabelle/HOL. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 398–414. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Wenzel, M.: Using axiomatic type classes in Isabelle, Isabelle documentation (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alexander Krauss
    • 1
  1. 1.Technische Universität München, Institut für Informatik 

Personalised recommendations