A Labelled System for IPL with Variable Splitting

  • Roger Antonsen
  • Arild Waaler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4603)

Abstract

The paper introduces a free variable, labelled proof system for intuitionistic propositional logic with variable splitting. In this system proofs can be found without backtracking over rules by generating a single, uniform derivation. We prove soundness, introduce a construction that extracts finite countermodels from unprovable sequents, and formulate a branchwise termination condition. This is the first proof system for intuitionistic propositional logic that admits goal-directed search procedures without compromising proof lengths, compared to corresponding tableau calculi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonsen, R., Waaler, A.: Consistency of variable splitting in free variable systems of first-order logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 33–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Antonsen, R., Waaler, A.: Liberalized variable splitting. Journal of Automated Reasoning 38, 3–30 (2007)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bibel, W.: Automated Theorem Proving. 2. edn. Vieweg Verlag (1987)Google Scholar
  4. 4.
    Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic 57, 795–807 (1992)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Giese, M.: Proof Search without Backtracking for Free Variable Tableaux. PhD thesis, Fakultät für Informatik, Universität Karlsruhe (July 2002)Google Scholar
  6. 6.
    Hansen, C.M., Antonsen, R., Waaler, A.: Incremental closure of variable splitting tableaux, position paper. In: Olivetti, N. (ed.) TABLEAUX 2007, Aix en Provence, France. LNCS, vol. 4548, Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Hudelmaier, J.: Bounds on cut-elimination in intuitionistic propositional logic. Archive for Mathematical Logic 31, 331–353 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kreitz, C., Otten, J.: Connection-based theorem proving in classical and non-classical logics. Journal of Universal Computer Science 5(3), 88–112 (1999)MATHMathSciNetGoogle Scholar
  9. 9.
    Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–261. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Raths, T., Otten, J., Kreitz, C.: The ILTP library: Benchmarking automated theorem provers for intuitionistic logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 333–337. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Sahlin, D., Franzén, T., Haridi, S.: An intuitionistic predicate logic theorem prover. Journal of Logic and Computation 2(5), 619–656 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Smullyan, R.M.: First-Order Logic. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 43, Springer, New York (1968)Google Scholar
  13. 13.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  14. 14.
    Waaler, A.: Connections in nonclassical logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 22, vol. II, pp. 1487–1578. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  15. 15.
    Waaler, A., Wallen, L.: Tableaux for intuitionistic logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableaux Methods, pp. 255–296. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  16. 16.
    Wallen, L.A.: Automated deduction in nonclassical logics. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Roger Antonsen
    • 1
  • Arild Waaler
    • 1
  1. 1.Department of Informatics, University of OsloNorway

Personalised recommendations