Formalizing the Abstraction Process in Model-Based Diagnosis

  • Lorenza Saitta
  • Pietro Torasso
  • Gianluca Torta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4612)

Abstract

Several theories have been proposed to capture the essence of abstraction. Among these, the \(\mathcal{KRA}\) model offers a framework where a set of generic abstraction operators allows abstraction to be automated.

In this paper we show how to describe component-based abstraction for the Model-Based Diagnosis task within the \(\mathcal{KRA}\) framework, and we discuss the benefits of such a formalization.

The clear and explicit partition of the system model into different levels required by \(\mathcal{KRA}\) (going from the perception level up to the theory level) opens the way to explore richer and better founded kinds of abstraction to apply to the MBD task.

Another noticeable advantage is that, by suitably personalizing the generic abstraction operators of \(\mathcal{KRA}\), the whole abstraction process, from the definition of abstract (macro)components to the computation of their behaviors starting from those of the ground components, can be performed automatically in such a way that important relationships between ground and abstract diagnoses are guaranteed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holte, R., Mkadmi, T., Zimmer, R., MacDonald, A.: Speeding up problem-solving by abstraction: A graph-oriented approach. Art. Intelligence 85, 321–361 (1996)CrossRefGoogle Scholar
  2. 2.
    Knoblock, C., Tenenberg, J., Qiang, Y.: A spectrum of abstraction hierarchies for planning. In: Proc. AAAI WS on AGAA, pp. 24–35 (1990)Google Scholar
  3. 3.
    Mozetič, I.: Hierarchical model-based diagnosis. Int. Journal of Man-Machine Studies 35(3), 329–362 (1991)CrossRefGoogle Scholar
  4. 4.
    Subramanian, D.: Automation of abstractions and approximations: Some challenges. In: Proc. AAAI WS on AGAA, pp. 76–77 (1990)Google Scholar
  5. 5.
    Giunchiglia, F., Walsh, T.: A theory of abstraction. Art. Intell. 57(2-3), 323–389 (1992)CrossRefGoogle Scholar
  6. 6.
    Nayak, P., Levy, A.: A semantic theory of abstraction. In: Proc. IJCAI, pp. 196–202 (1995)Google Scholar
  7. 7.
    Korf, R.: Toward a model of representation changes. Art. Intell. 14, 41–78 (1980)CrossRefGoogle Scholar
  8. 8.
    Saitta, L., Zucker, J.: Semantic abstraction for concept representation and learning. In: Proc. SARA, pp. 103–120 (1998)Google Scholar
  9. 9.
    Sachenbacher, M., Struss, P.: Task-dependent qualitative domain abstraction. Art. Intell. 162(1-2), 121–143 (2005)CrossRefGoogle Scholar
  10. 10.
    Chittaro, L., Ranon, R.: Hierarchical model-based diagnosis based on structural abstraction. Art. Intell. 155(1-2), 147–182 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Torta, G., Torasso, P.: Automatic abstraction in component-based diagnosis driven by system observability. In: Proc. IJCAI, pp. 394–400 (2003)Google Scholar
  12. 12.
    Struss, P., Malik, A., Sachenbacher, M.: Qualitative modeling is the key to automated diagnosis. In: Proc. IFAC 1996 (1996)Google Scholar
  13. 13.
    Saitta, L., Zucker, J.D.: Abstraction and complexity measures. In: Proc. SARA-2007 (2007)Google Scholar
  14. 14.
    Plaisted, D.: Theorem proving with abstraction. Art. Intelligence 16, 47–108 (1981)MATHCrossRefGoogle Scholar
  15. 15.
    Tenenberg, J.: Preserving consistency across abstraction mappings. In: Proc. IJCAI 1987, pp. 1011–1014 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lorenza Saitta
    • 1
  • Pietro Torasso
    • 2
  • Gianluca Torta
    • 2
  1. 1.Dipartimento di Informatica, Università del Piemonte Orientale, Via Bellini 25/G, 15100 AlessandriaItaly
  2. 2.Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 TorinoItaly

Personalised recommendations