Scaling, Renormalization, and Universality in Combinatorial Games: The Geometry of Chomp

  • Eric J. Friedman
  • Adam Scott Landsberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4616)


Combinatorial games pose an extreme challenge to combinatorial optimization. Several combinatorial games have been shown to be PSPACE-hard and many more are believed to be so. In this paper, we present a new approach to analyzing combinatorial games, which differs dramatically from current approaches. Using the combinatorial game Chomp as a model system, we employ ideas from physics and dynamical systems theory to unveil deep connections between such games and nonlinear phenomena commonly seen in nature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays. Academic Press, London (1982)MATHGoogle Scholar
  2. 2.
    Nowakowski, R.J.: Games of No Chance. Cambridge University Press, Cambridge (1996)Google Scholar
  3. 3.
    Nowakowski, R.J.: More Games of No Chance. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  4. 4.
    Fleischer, R.H., Nowakowski, R.J.: Algorithmic combinatorial game theory. Elsevier, Amsterdam (2004)Google Scholar
  5. 5.
    Berlekamp, E.: The Game of Dots and Boxes - sophisticated child’s play. A K Peters Ltd, Natick, MA (2000)Google Scholar
  6. 6.
    Berlekamp, E., Wolfe, D.: Mathematical Go: Chilling Gets the Last Point. A K Peters Ltd, Natick, MA (1994)MATHGoogle Scholar
  7. 7.
    Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Fraenkel, A.S.: Complexity, appeal and challenges of combinatorial games. Theoretical Computer Science 313, 393–415 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Demaine, E.D., Fleischer, R., Fraenkel, A.S., Nowakowski, R.J.: Open problems at the 2002 Dagstuhl Seminar on Algorithmic combinatorial game theory. Theoretical Computer Science 313, 539–543 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Guy, R., Nowakowski, R.: Unsolved Problems in Combinatorial Games. In: Nowakowski, R.J. (ed.) More Games of No Chance, Cambridge University Press, Cambridge (2002)Google Scholar
  11. 11.
    Sprague, R.: Uber mathematische Kampfspiele. Tohoku Mathematical Journal 41, 438–444 (1936)Google Scholar
  12. 12.
    Grundy, P.M.: Mathematics and games. Eureka 2, 6–8 (1939)Google Scholar
  13. 13.
    Smith, C.: Graphs and composite games. Journal of Combinatorial Theory 1, 51–81 (1966)MATHCrossRefGoogle Scholar
  14. 14.
    Conway, J.H.: On Numbers and Games. AK Peters Ltd., Natick, Mass (2000)Google Scholar
  15. 15.
    Newborn, M.: Kasparov versus Deep Blue: Computer Chess Comes of Age. Springer, New York (1997)Google Scholar
  16. 16.
    Schaeffer, J.: One Jump Ahead: Challenging Human Supremacy in Checkers. Springer, New York (1997)Google Scholar
  17. 17.
    Gale, D.: A Curious Nim-type game. Amer. Math. Monthly 81, 876–879 (1974)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schuh, F.: Spel van delers. Nieuw Tijdschrift voor Wiskunde 39, 299–304 (1952)Google Scholar
  19. 19.
    Zeilberger, D.: Three-rowed Chomp. Adv. in Appl. Math. 26, 168–179 (2001)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zeilberger, D.: Chomp, Recurrences, and Chaos. J. Difference Equations and its Applications 10, 1281–1293 (2004)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sun, X.: Improvements on Chomp. Integers 2 G1, 8 (2002), Google Scholar
  22. 22.
    Byrnes, S.: Poset Games Periodicity. Integers 3 G3, 8 (2003), MathSciNetGoogle Scholar
  23. 23.
    Brouwer, A.E.: The game of Chomp (2004), On-line document

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Eric J. Friedman
    • 1
  • Adam Scott Landsberg
    • 2
  1. 1.School of ORIE, Cornell University, Ithaca, NY 14853USA
  2. 2.Joint Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711USA

Personalised recommendations