Exact Algorithms for Generalized Combinatorial Optimization Problems

  • Petrica C. Pop
  • Corina Pop Sitar
  • Ioana Zelina
  • Ioana Taşcu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4616)

Abstract

We discuss fast exponential time exact algorithms for generalized combinatorial optimization problems. The list of discussed NP-complete generalized combinatorial optimization problems includes the generalized minimum spanning tree problem, the generalized subset assignment problem and the generalized travelling salesman problem.

Keywords

generalized combinatorial optimization problems exact algorithms dynamic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dror, M., Haouari, M.: Generalized Steiner Problems and Other Variants. Journal of Combinatorial Optimization 4, 415–436 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dror, M., Haouari, M., Chaouachi, J.: Generalized Spanning Trees. European Journal of Operational Research 120, 583–592 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Feremans, C.: Generalized Spanning Trees and Extensions, PhD thesis, Universite Libre de Bruxelles, Belgium (2001)Google Scholar
  4. 4.
    Feremans, C., Labbe, M., Laporte, G.: A Comparative Analysis of Several Formulations of the Generalized Minimum Spanning Tree Problem. Networks 39(1), 29–34 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fischetti, M., Salazar, J.J., Toth, P.: The symmetric generalized traveling salesman polytope. Networks 26, 113–123 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Operations Research 45, 378–394 (1997)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fisher, M.L., Jaikumar, R., van Wassenhove, L.N.: A multiplier adjustment method for generalized assignment problem. Management Science 32/9, 1095–1103 (1986)Google Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-Completeness. Freeman, San Francisco, California (1979)MATHGoogle Scholar
  9. 9.
    Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the generalized traveling salesman problem. J. Oper. Res. Soc. 47, 1461–1467 (1996)MATHCrossRefGoogle Scholar
  11. 11.
    Laporte, G., Nobert, Y.: Generalized Traveling Salesman through n sets of nodes: an integer programming approach. INFOR 21, 61–75 (1983)MATHGoogle Scholar
  12. 12.
    Noon, C.E., Bean, J.C.: A Lagrangian based approach for the asymmetric generalized traveling salesman problem. Operations Research 39, 623–632 (1991)MATHMathSciNetGoogle Scholar
  13. 13.
    Myung, Y.S., Lee, C.H., Tcha, D.w.: On the Generalized Minimum Spanning Tree Problem. Networks 26, 231–241 (1995)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pop, P.C.: The Generalized Minimum Spanning Tree Problem, PhD thesis, University of Twente, The Netherlands (2002)Google Scholar
  15. 15.
    Pop, P.C.: New Models of the Generalized Minimum Spanning Tree Problem. Journal of Mathematical Modelling and Algorithms 3(2), 153–166 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pop, P.C.: On the Prize-Collecting Generalized Minimum Spanning Tree Problem. In Annals of Operations Research (to appear)Google Scholar
  17. 17.
    Pop, P.C., Kern, W., Still, G.: Approximation Theory in Combinatorial Optimization. Application to the Generalized Minimum Spanning Tree Problem, Revue d’Analyse Numerique et de Theorie de l’Approximation, Tome, vol. 34(1), pp. 93–102 (2005)Google Scholar
  18. 18.
    Pop, P.C., Kern, W., Still, G.: A New Relaxation Method for the Generalized Minimum Spanning Tree Problem. European Journal of Operational Research 170, 900–908 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences 43, 441–466 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Petrica C. Pop
    • 1
  • Corina Pop Sitar
    • 2
  • Ioana Zelina
    • 1
  • Ioana Taşcu
    • 1
  1. 1.Department of Mathematics and Computer Science, Faculty of Sciences, North University of Baia MareRomania
  2. 2.Department of Economics, Faculty of Sciences, North University of Baia MareRomania

Personalised recommendations