Using River Formation Dynamics to Design Heuristic Algorithms

  • Pablo Rabanal
  • Ismael Rodríguez
  • Fernando Rubio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4618)

Abstract

Finding the optimal solution to NP-hard problems requires at least exponential time. Thus, heuristic methods are usually applied to obtain acceptable solutions to this kind of problems. In this paper we propose a new type of heuristic algorithms to solve this kind of complex problems. Our algorithm is based on river formation dynamics and provides some advantages over other heuristic methods, like ant colony optimization methods. We present our basic scheme and we illustrate its usefulness applying it to a concrete example: The Traveling Salesman Problem.

Keywords

Traveling Salesman Problem Nature-based Algorithms Heuristic Algorithms Ant Colony Optimization Algorithms 

References

  1. 1.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ (2006)MATHGoogle Scholar
  2. 2.
    Davis, L. (ed.): Handbook of genetic algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  3. 3.
    Dorigo, M.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHGoogle Scholar
  4. 4.
    Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. BioSystems 43(2), 73–81 (1997)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  6. 6.
    Fleischer, M.: Simulated annealing: past, present, and future. In: Proceedings of the 27th conference on Winter simulation, pp. 155–161 (1995)Google Scholar
  7. 7.
    Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  8. 8.
    Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley-Interscience, New York, NY, USA (2004)MATHGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, 1995, vol. 4 (1995)Google Scholar
  10. 10.
    Kirkpatrick, S., Gelatt, Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671 (1983)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Langton, C.: Studying artificial life with cellular automata. Physica D 22, 120–149 (1986)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Reinelt, G.: TSPLIB 95. Technical report, Research Report, Institut für Angewandte Mathematik, Universität Heidelberg, Heidelberg, Germany (1995), http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
  13. 13.
    Rosenberg, G., Salomaa, A. (eds.): Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley, London, UK (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pablo Rabanal
    • 1
  • Ismael Rodríguez
    • 1
  • Fernando Rubio
    • 1
  1. 1.Dept. Sistemas Informáticos y Computación, Facultad de Informática, Universidad Complutense de Madrid, 28040 MadridSpain

Personalised recommendations