Enumerating Constrained Non-crossing Geometric Spanning Trees

  • Naoki Katoh
  • Shin-ichi Tanigawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4598)

Abstract

In this paper we present an algorithm for enumerating without repetitions all non-crossing geometric spanning trees on a given set of n points in the plane under edge inclusion constraints (i.e., some edges are required to be included in spanning trees). We will first prove that a set of all edge-constrained non-crossing spanning trees is connected via remove-add flips, based on the constrained smallest indexed triangulation which is obtained by extending the lexicographically ordered triangulation introduced by Bespamyatnikh. More specifically, we prove that all edge-constrained triangulations can be transformed to the smallest indexed triangulation among them by O(n2) times of greedy flips. Our enumeration algorithm generates each output graph in O(n2) time and O(n) space based on reverse search technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Aurenhammer, F., Huemer, C., Krasser, H.: Transforming spanning trees and pseudo-triangulations. Inf. Process. Lett. 97(1), 19–22 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enumeration of plane straight-line graphs. In: Proc. 22th European Workshop on Computational Geometry (EuroCG 2006), pp. 71–74. Greece (2006)Google Scholar
  3. 3.
    Aichholzer, O., Aurenhammer, F., Hurtado, F.: Sequences of spanning trees and a fixed tree theorem. Comput. Geom. 21(1-2), 3–20 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aichholzer, O., Reinhardt, K.: A quadratic distance bound on sliding between crossing-free spanning trees. In: Proc. 20th European Workshop on Computational Geometry (EWCG 2004), pp. 13–16 (2004)Google Scholar
  5. 5.
    Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete and Computational Geometry 8, 295–313 (1992)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65(1-3), 21–46 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Avis, D., Katoh, N., Ohsaki, M., Streinu, I., Tanigawa, S.: Enumerating constrained non-crossing minimally rigid frameworks, http://arxiv.org/PS_cache/math/pdf/0608/0608102.pdf
  8. 8.
    Bespamyatnikh, S.: An efficient algorithm for enumeration of triangulations. Comput. Geom. Theory Appl. 23(3), 271–279 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Hernando, M.C., Houle, M.E., Hurtado, F.: On local transformation of polygons with visibility properties. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 54–63. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings. Graphs and Combinatorics 18(3), 517–532 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete & Computational Geometry 22(3), 333–346 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Welsh, D.J.A.: Matroids: fundamental concepts. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. I, pp. 481–526. North-Holland, Amsterdam (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Naoki Katoh
    • 1
  • Shin-ichi Tanigawa
    • 1
  1. 1.Department of Architecture and Architectural Engineering, Kyoto University, Kyoto 615-8450Japan

Personalised recommendations