Efficient Index Support for View-Dependent Queries on CFD Data

  • Christoph Brochhaus
  • Thomas Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4605)

Abstract

Recent years have revealed a growing importance of Virtual Reality (VR) visualization techniques which offer comfortable means to enable users to interactively explore 3D data sets. Particularly in the field of computational fluid dynamics (CFD), the rapidly increasing size of data sets with complex geometric and supplementary scalar information requires new out-of-core solutions for fast isosurface extraction and other CFD post-processing tasks. Whereas spatial access methods overcome the limitations of main memory size and support fast data selection, their VR support needs to be improved. Firstly, interactive users strongly depend on quick first views of the regions in their view direction and, secondly, they require quick relevant views even when they change their view point or view direction.

We develop novel view-dependent extensions for access methods which support static and dynamic scenarios. Our new human vision-oriented distance function defines an adjusted order of appearance for data objects in the visualization space and, thus, supports quick first views. By a novel incremental concept of view-dependent result streaming which interactively follows dynamic changes of users’ viewpoints and view directions, we provide a high degree of interactivity and mobility in VR environments. Our integration into the new index based graphics data server “IndeGS” proves the efficiency of our techniques in the context of post-processing CFD data with dynamically interacting users.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Conf, pp. 47–57 (1984)Google Scholar
  2. 2.
    Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-Tree: A Dynamic Index for Multi-Dimensional Objects.. In: VLDB Conference, pp. 507–518 (1987)Google Scholar
  3. 3.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. In: SIGMOD Conf. pp. 322–331 (1990)Google Scholar
  4. 4.
    Chiang, Y.J., Silva, C.T., Schroeder, W.J.: Interactive out-of-core isosurface extraction. In: VIS Conference, pp. 167–174 (1998)Google Scholar
  5. 5.
    Roussopoulos, N., Kelley, S., Vincent, S.: Nearest Neighbor Queries. In: SIGMOD Conference, pp. 71–79 (1995)Google Scholar
  6. 6.
    Hjaltason, G.R., Samet, H.: Ranking in Spatial Databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 83–95. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Seidl, T., Kriegel, H.-P.: Efficient user-adaptable similarity search in large multimedia databases. In: VLDB Conference, pp. 506–515 (1997)Google Scholar
  8. 8.
    Iwerks, G.S., Samet, H., Smith, K.P.: Continuous k-nearest neighbor queries for continuously moving points with updates. In: VLDB Conference, pp. 512–523 (2003)Google Scholar
  9. 9.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: SIGMOD Conference, pp. 331–342 (2000)Google Scholar
  10. 10.
    Mokbel, M., Xiong, X., Aref, W.: SINA: Scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD Conference, pp. 623–634 (2004)Google Scholar
  11. 11.
    Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-Tree: An Index Structure for High-Dimensional Data. In: VLDB Conference, pp. 28–39 (1996)Google Scholar
  13. 13.
    Leutenegger, S.T., Edgington, J.M., Lopez, M.A.: STR: A Simple and Efficient Algorithm for R-Tree Packing. In: ICDE, pp. 497–506 (1997)Google Scholar
  14. 14.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit. Kitware Inc. (2004)Google Scholar
  15. 15.
    Sagan, H.: Space-filling curves. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Reimersdahl, T.v., Kuhlen, T., Gerndt, A., Heinrichs, J., Bischof, C.: ViSTA - a multimodal, platform-independent VR-Toolkit based on WTK, VTK, and MPI. In: IPT Workshop (2000)Google Scholar
  17. 17.
    Schirski, M., Gerndt, A., Reimersdahl, T.v., Kuhlen, T., Adomeit, P., Lang, O., Pischinger, S., Bischof, C.: ViSTA FlowLib - framework for interactive visualization and exploration of unsteady flows in virtual environments. In: EGVE Workshop, pp. 77–85. ACM Press, New York (2003)CrossRefGoogle Scholar
  18. 18.
    Kriegel, H.-P., Pötke, M., Seidl, T.: Managing intervals efficiently in object-relational databases. In: VLDB Conference, pp. 407–418 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christoph Brochhaus
    • 1
  • Thomas Seidl
    • 1
  1. 1.Data Management and Exploration Group, RWTH Aachen UniversityGermany

Personalised recommendations