A Scalable and Secure Cryptographic Service

  • Shouhuai Xu
  • Ravi Sandhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4602)


In this paper we present the design of a scalable and secure cryptographic service that can be adopted to support large-scale networked systems, which may require strong authentication from a large population of users. Since the users may not be able to adequately protect their cryptographic credentials, our service leverages some better protected servers to help fulfill such authentication needs. Compared with previous proposals, our service has the following features: (1) it incorporates a 3-factor authentication mechanism, which facilitates compromise detection; (2) it supports immediate revocation of a cryptographic functionality in question; (3) the damage due to the compromise of a server is contained; (4) it is scalable and highly available.


cryptographic service scalability security compromise detection compromise confinement availability 


  1. 1.
    Anderson, R.: Invited Talk at ACM CCS 1997 (1997)Google Scholar
  2. 2.
    Asokan, N., Tsudik, G., Waidner, M.: Server-Supported Signatures. Journal of Computer Security 5(1) (1997)Google Scholar
  3. 3.
    Bellare, M., Miner, S.: A forward-secure digital signature scheme. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols. In: Proc. ACM CCS 1993, pp. 62–73 (1993)Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Optimal asymmetric encryption – How to encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Bellovin, S., Merritt, M.: Encrypted Key Exchange: Password-based Protocols Secure against Dictionary Attack. In: Proc. IEEE Security and Privacy, IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  9. 9.
    Boneh, D., Ding, X., Tsudik, G., Wong, C., Method, A.: for Fast Revocation of Public Key Certificates and Security Capabilities. In: Proc. Usenix Security Symposium (2001)Google Scholar
  10. 10.
    Boyd, C.: Digital Multisignatures. In: Beker, H.J., Piper, F.C. (eds.) Cryptography and Coding, pp. 241–246. Clarendon Press (1989)Google Scholar
  11. 11.
    Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password Authentication and Key Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidelberg (2000)Google Scholar
  12. 12.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Dean, D., Berson, T., Franklin, M., Smetters, D., Spreitzer, M.: Cryptography as a Network Service.In: Proc. NDSS 2001 (2001)Google Scholar
  14. 14.
    Denning, D.E.: Digital Signature with RSA and other Public-Key Cryptosystems. C. ACM 27(4), 388–392 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong Key-Insulated Signature Schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Ganesan, R.,Yaksha: Augmenting Kerberos with Public Key Cryptography. In: Proc. NDSS 1995 (1995)Google Scholar
  17. 17.
    Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. J. ACM 33(4), 210–217 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2), 281–308 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Itkis, G., Reyzin, L.: Forward-Secure Signatures with Optimal Signing and Verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Itkis, G., Reyzin, L.: SiBIR: Signer-Base Intrusion-Resilient Signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, Springer, Heidelberg (2002)Google Scholar
  21. 21.
    Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange Using Human-Memorizable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, Springer, Heidelberg (2001)Google Scholar
  22. 22.
    MacKenzie, P., Reiter, M.: Networked Cryptographic Devices Resilient to Capture. In: Proc. IEEE Security and Privacy, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  23. 23.
    Matsumoto, T., Kato, K., Imai, H.: Speeding Up Secret Computations with Insecure Auxiliary Devices. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, Springer, Heidelberg (1990)Google Scholar
  24. 24.
    Perlman, R., Kaufman, C.: Secure Password-based Protocol for Downloading a Private Key. In: Proc. NDSS 1999 (1999)Google Scholar
  25. 25.
    Pinkas, B., Sander, T.: Securing Passwords Against Dictionary Attacks. In: Proc. ACM CCS 2002 (2002)Google Scholar
  26. 26.
    Rackoff, C., Simon, D.: Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, Springer, Heidelberg (1992)Google Scholar
  27. 27.
    Rivest, R.A., Shamir, A., Adleman, L., Method, A.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. C. ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Schneider, F.: Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)CrossRefGoogle Scholar
  29. 29.
    Xu, S., Sandhu, R.: Two Efficient and Provably Secure Schemes for Server-Assisted Threshold Signatures. In: Proc. RSA Con. – Cryptographer’s Track (2003)Google Scholar
  30. 30.
    Xu, S., Sandhu, R.: A Scalable Secure Cryptographic Service. Full version of the present paper, available at

Copyright information

© IFIP International Federation for Information Processing 2007

Authors and Affiliations

  • Shouhuai Xu
    • 1
  • Ravi Sandhu
    • 2
  1. 1.Department of Computer Science, University of Texas at San AntonioUSA
  2. 2.Institute for Cyber-Security Research, University of Texas at San AntonioUSA

Personalised recommendations