Advertisement

Axions pp 51-71 | Cite as

Astrophysical Axion Bounds

  • Georg G. Raffelt
Part of the Lecture Notes in Physics book series (LNP, volume 741)

Abstract

Axion emission by hot and dense plasmas is a new energy-loss channel for stars. Observable consequences include a modification of the solar sound-speed profile, an increase of the solar neutrino flux, a reduction of the helium-burning lifetime of globular-cluster stars, accelerated white-dwarf cooling, and a reduction of the supernova SN 1987A neutrino burst duration. I review and update these arguments and summarize the resulting axion constraints.

Keywords

Solar Axion White Dwarf Globular Cluster Horizontal Branch Asymptotic Giant Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gamow, G., Schoenberg, M.: The possible role of neutrinos in stellar evolution. Phys. Rev. 58, 1117 (1940)CrossRefADSGoogle Scholar
  2. 2.
    Gamow, G., Schoenberg, M.: Neutrino theory of stellar collapse. Phys. Rev. 59, 539 (1941)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    Bernstein, J., Ruderman, M., Feinberg, G.: Electromagnetic properties of the neutrino. Phys. Rev. 132, 1227 (1963)CrossRefADSGoogle Scholar
  4. 4.
    Stothers, R.B.: Astrophysical determination of the coupling constant for the electron-neutrino weak interaction. Phys. Rev. Lett. 24, 538 (1970)CrossRefADSGoogle Scholar
  5. 5.
    Sato, K., Sato, H.: Higgs meson emission from a star and a constraint on its mass. Prog. Theor. Phys. 54, 1564 (1975)CrossRefADSGoogle Scholar
  6. 6.
    Dicus, D.A., Kolb, E.W., Teplitz, V.L., Wagoner, R.V.: Astrophysical bounds on the masses of axions and Higgs particles. Phys. Rev. D 18, 1829 (1978)CrossRefADSGoogle Scholar
  7. 7.
    Vysotsky, M.I., Zeldovich, Y.B., Khlopov, M.Y., Chechetkin, V.M.: Some astrophysical limitations on the axion mass. Pisma Zh. Eksp. Teor. Fiz. 27, 533 (1978) [JEPT Lett. 27, 502 (1978)]ADSGoogle Scholar
  8. 8.
    Turner, M.S.: Windows on the axion. Phys. Rept. 197, 67 (1990)CrossRefADSGoogle Scholar
  9. 9.
    Raffelt, G.G.: Astrophysical methods to constrain axions and other novel particle phenomena. Phys. Rept. 198, 1 (1990)CrossRefADSGoogle Scholar
  10. 10.
    Raffelt, G.G.: Stars as laboratories for fundamental physics. University of Chicago Press, Chicago (1996)Google Scholar
  11. 11.
    Raffelt, G.G.: Particle physics from stars. Ann. Rev. Nucl. Part. Sci. 49, 163 (1999) [hep-ph/9903472]CrossRefADSGoogle Scholar
  12. 12.
    Yao, W.M., et al.: (Particle Data Group), Review of particle physics. J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  13. 13.
    Georgi, H., Kaplan, D.B., Randall, L.: Manifesting the invisible axion at low energies. Phys. Lett. B 169, 73 (1986)CrossRefADSGoogle Scholar
  14. 14.
    Kamionkowski, M., MarchRussell, J.: Planck scale physics and the Peccei-Quinn mechanism. Phys. Lett. B 282, 137 (1992) [hep-th/9202003]CrossRefADSGoogle Scholar
  15. 15.
    Barr, S.M., Seckel, D.: Planck scale corrections to axion models. Phys. Rev. D 46, 539 (1992)CrossRefADSGoogle Scholar
  16. 16.
    Gasser, J., Leutwyler, H.: Quark masses. Phys. Rept. 87, 77 (1982)CrossRefADSGoogle Scholar
  17. 17.
    Leutwyler, H.: The ratios of the light quark masses. Phys. Lett. B 378, 313 (1996) [hep-ph/9602366]CrossRefADSGoogle Scholar
  18. 18.
    Kim, J.E.: Weak interaction singlet and strong CP invariance. Phys. Rev. Lett. 43, 103 (1979)CrossRefADSGoogle Scholar
  19. 19.
    Shifman, M.A., Vainshtein, A.I., Zakharov, V.I.: Can confinement ensure natural CP invariance of strong interactions?. Nucl. Phys. B 166, 493 (1980)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Zhitnitsky, A.R.: On possible suppression of the axion hadron interactions. Sov. J. Nucl. Phys. 31, 260 (1980) [Yad. Fiz. 31, 497 (1980)]Google Scholar
  21. 21.
    Dine, M., Fischler, W., Srednicki, M.: A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 104, 199 (1981)CrossRefADSGoogle Scholar
  22. 22.
    Cheng, S.L., Geng, C.Q., Ni, W.T.: Axion-photon couplings in invisible axion models. Phys. Rev. D 52, 3132 (1995) [hep-ph/9506295]CrossRefADSGoogle Scholar
  23. 23.
    Raffelt, G., Seckel, D.: Bounds on exotic particle interactions from SN 1987A. Phys. Rev. Lett. 60, 1793 (1988)CrossRefADSGoogle Scholar
  24. 24.
    Carena, M., Peccei, R.D.: The effective Lagrangian for axion emission from SN 1987A. Phys. Rev. D 40, 652 (1989)CrossRefADSGoogle Scholar
  25. 25.
    Alexakhin, V.Y., et al.: (COMPASS Collaboration): The deuteron spin-dependent structure function g_1^d and its first moment. Phys. Lett. B 647, 8 (2007) [hep-ex/0609038]CrossRefADSGoogle Scholar
  26. 26.
    Airapetian, A. (HERMES Collaboration): Precise determination of the spin structure function g_1 of the proton, deuteron and neutron. [hep-ex/0609039]Google Scholar
  27. 27.
    Ellis, J.R., Karliner, M.: The strange spin of the nucleon. In: Frois, B., Hughes, V.W., De Groot, N. (eds.) The Spin Structure of the Nucleon: International School of Nucleon Structure. Erice, Italy (3–10 August 1995) World Scientific, Singapore (1997) [hep-ph/9601280]Google Scholar
  28. 28.
    Primakoff, H.: Photo-production of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 81, 899 (1951)CrossRefADSGoogle Scholar
  29. 29.
    Raffelt, G.G.: Astrophysical axion bounds diminished by screening effects. Phys. Rev. D 33, 897 (1986)CrossRefADSGoogle Scholar
  30. 30.
    Altherr, T., Petitgirard, E., del Rí o Gaztelurrutia, T.: Axion emission from red giants and white dwarfs. Astropart. Phys. 2, 175 (1994) [hep-ph/9310304]CrossRefADSGoogle Scholar
  31. 31.
    Raffelt, G.G.: Plasmon decay into low mass bosons in stars. Phys. Rev. D 37, 1356 (1988)CrossRefADSGoogle Scholar
  32. 32.
    Zavattini, E., et al.: (PVLAS Collaboration): Experimental observation of optical rotation generated in vacuum by a magnetic field. Phys. Rev. Lett. 96, 110406 (2006) [hep-ex/0507107]CrossRefADSGoogle Scholar
  33. 33.
    Cameron, R., et al.: Search for nearly massless, weakly coupled particles by optical techniques. Phys. Rev. D 47, 3707 (1993)CrossRefADSGoogle Scholar
  34. 34.
    Schlattl, H., Weiss, A., Raffelt, G.: Helioseismological constraint on solar axion emission. Astropart. Phys. 10, 353 (1999) [hep-ph/9807476]CrossRefADSGoogle Scholar
  35. 35.
    Bahcall, J.N., Serenelli, A.M., Basu, S.: New solar opacities, abundances, helioseismology, and neutrino fluxes. Astrophys. J. 621, L85 (2005) [astro-ph/0412440]CrossRefADSGoogle Scholar
  36. 36.
    Ahmad, Q.R., et al.: (SNO Collaboration): Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002) [nucl-ex/0204008]CrossRefADSGoogle Scholar
  37. 37.
    Aharmim, B., et al.: (SNO Collaboration): Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO data set. Phys. Rev. C 72, 055502 (2005) [nucl-ex/0502021]CrossRefADSGoogle Scholar
  38. 38.
    Sikivie, P.: Experimental tests of the invisible axion. Phys. Rev. Lett. 51, 1415 (1983); (E) ibid. 52, 695 (1984)CrossRefADSGoogle Scholar
  39. 39.
    Raffelt, G., Stodolsky, L.: Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988)CrossRefADSGoogle Scholar
  40. 40.
    Lazarus, D.M., Smith, G.C., Cameron, R., Melissinos, A.C., Ruoso, G., Semertzidis, Y.K., Nezrick, F.A.: A search for solar axions. Phys. Rev. Lett. 69, 2333 (1992)CrossRefADSGoogle Scholar
  41. 41.
    Moriyama, S., Minowa, M., Namba, T., Inoue, Y., Takasu, Y., Yamamoto, A.: Direct search for solar axions by using strong magnetic field and x-ray detectors. Phys. Lett. B 434, 147 (1998) [hep-ex/9805026]CrossRefADSGoogle Scholar
  42. 42.
    Inoue, Y., Namba, T., Moriyama, S., Minowa, M., Takasu, Y., Horiuchi, T., Yamamoto, A.: Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium. Phys. Lett. B 536, 18 (2002) [astro-ph/0204388]CrossRefADSGoogle Scholar
  43. 43.
    Avignone, F.T., et al.: (SOLAX Collaboration): Experimental search for solar axions via coherent Primakoff conversion in a germanium spectrometer. Phys. Rev. Lett. 81, 5068 (1998) [astro-ph/9708008]CrossRefADSGoogle Scholar
  44. 44.
    Morales, A., et al.: (COSME Collaboration): Particle dark matter and solar axion searches with a small germanium detector at the Canfranc underground laboratory. Astropart. Phys. 16, 325 (2002) [hep-ex/0101037]CrossRefADSGoogle Scholar
  45. 45.
    Bernabei, R., et al.: Search for solar axions by Primakoff effect in NaI crystals. Phys. Lett. B 515, 6 (2001)Google Scholar
  46. 46.
    Zioutas, K., et al.: (CAST Collaboration): First results from the CERN axion solar telescope (CAST). Phys. Rev. Lett. 94, 121301 (2005) [hep-ex/0411033]CrossRefADSGoogle Scholar
  47. 47.
    van Bibber, K., McIntyre, P.M., Morris, D.E., Raffelt, G.G.: A practical laboratory detector for solar axions. Phys. Rev. D 39, 2089 (1989)CrossRefADSGoogle Scholar
  48. 48.
    Raffelt, G.G., Starkman, G.D.: Stellar energy transfer by keV mass scalars. Phys. Rev. D 40, 942 (1989)CrossRefADSGoogle Scholar
  49. 49.
    Buzzoni, A., Fusi Pecci, F., Buonanno, R., Corsi, C.E.: Helium abundance in globular clusters: the R-method. Astron. Astrophys. 128, 94 (1983)ADSGoogle Scholar
  50. 50.
    Buonanno, R., Buzzoni, A., Corsi, C.E., Fusi Pecci, F., Sandage, A.R.: High precision photometry of 10000 stars in M3. Mem. Soc. Astron. Ital. 57, 391 (1986)ADSGoogle Scholar
  51. 51.
    Renzini, A., Fusi Pecci, F.: Tests of evolutionary sequences using color-magnitude diagrams of globular clusters. Annu. Rev. Astron. Astrophys. 26, 199 (1988)CrossRefADSGoogle Scholar
  52. 52.
    Raffelt, G.G.: Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties. Astrophys. J. 365, 559 (1990)CrossRefADSGoogle Scholar
  53. 53.
    Raffelt, G.G.: New bound on neutrino dipole moments from globular cluster stars. Phys. Rev. Lett. 64, 2856 (1990)CrossRefADSGoogle Scholar
  54. 54.
    Raffelt, G., Weiss, A.: Red giant bound on the axion-electron coupling revisited. Phys. Rev. D 51, 1495 (1995) [hep-ph/9410205]CrossRefADSGoogle Scholar
  55. 55.
    Catelan, M., de Freitas Pacheco, J.A., Horvath, J.E.: The helium-core mass at the helium flash in low-mass red giant stars: Observations and theory. Astrophys. J. 461, 231 (1996) [astro-ph/9509062]CrossRefADSGoogle Scholar
  56. 56.
    Domínguez, I., Straniero, O., Isern, J.: Asymptotic giant branch stars as astroparticle laboratories. Mon. Not. R. Astron. Soc. 306, L1 (1999) [astro-ph/9905033]CrossRefADSGoogle Scholar
  57. 57.
    Raffelt, G.G.: Axion constraints from white dwarf cooling times. Phys. Lett. B 166, 402 (1986)CrossRefADSGoogle Scholar
  58. 58.
    Wang, J.: Constraints of axions from white dwarf cooling. Mod. Phys. Lett. A 7, 1497 (1992)CrossRefADSGoogle Scholar
  59. 59.
    Blinnikov, S.I., Dunina-Barkovskaya, N.V.: The cooling of hot white dwarfs: A theory with non-standard weak interactions and a comparison with observations. Mon. Not. R. Astron. Soc. 266, 289 (1994)ADSGoogle Scholar
  60. 60.
    Isern, J., Hernanz, M., García-Berro, E.: Axion cooling of white dwarfs. Astrophys. J. 392, L23 (1992)CrossRefADSGoogle Scholar
  61. 61.
    Córsico, A.H., Benvenuto, O.G., Althaus, L.G., Isern, J., García-Berro, E.: The potential of the variable DA white dwarf G117-B15A as a tool for fundamental physics. New Astron. 6, 197 (2001) [astro-ph/0104103]CrossRefADSGoogle Scholar
  62. 62.
    Isern, J., García-Berro, E.: White dwarf stars as particle physics laboratories. Nucl. Phys. Proc. Suppl. 114, 107 (2003)CrossRefADSGoogle Scholar
  63. 63.
    Koshiba, M.: Observational neutrino astrophysics. Phys. Rept. 220, 229 (1992)CrossRefADSGoogle Scholar
  64. 64.
    Burrows, A.: Supernova explosions in the universe. Nature 403, 727 (2000)CrossRefADSGoogle Scholar
  65. 65.
    Woosley, S., Janka, T.: The physics of core-collapse supernovae. Nature Physics 1, 147 (2005) [astro-ph/0601261]CrossRefADSGoogle Scholar
  66. 66.
    Ellis, J.R., Olive, K.A.: Constraints on light particles from supernova 1987A. Phys. Lett. B 193, 525 (1987)CrossRefADSGoogle Scholar
  67. 67.
    Turner, M.S.: Axions from SN 1987A. Phys. Rev. Lett. 60, 1797 (1988)CrossRefADSGoogle Scholar
  68. 68.
    Mayle, R., Wilson, J.R., Ellis, J.R., Olive, K.A., Schramm, D.N., Steigman, G.: Constraints on axions from SN 1987A. Phys. Lett. B 203, 188 (1988)CrossRefADSGoogle Scholar
  69. 69.
    Mayle, R., Wilson, J.R., Ellis, J.R., Olive, K.A., Schramm, D.N., Steigman, G.: Updated constraints on axions from SN 1987A. Phys. Lett. B 219, 515 (1989)CrossRefADSGoogle Scholar
  70. 70.
    Brinkmann, R.P., Turner, M.S.: Numerical rates for nucleon-nucleon axion bremsstrahlung. Phys. Rev. D 38, 2338 (1988)CrossRefADSGoogle Scholar
  71. 71.
    Burrows, A., Turner, M.S., Brinkmann, R.P.: Axions and SN 1987A. Phys. Rev. D 39, 1020 (1989)CrossRefADSGoogle Scholar
  72. 72.
    Burrows, A., Ressell, M.T., Turner, M.S.: Axions and SN 1987A: Axion trapping. Phys. Rev. D 42, 3297 (1990)CrossRefADSGoogle Scholar
  73. 73.
    Janka, H.T., Keil, W., Raffelt, G., Seckel, D.: Nucleon spin fluctuations and the supernova emission of neutrinos and axions. Phys. Rev. Lett. 76, 2621 (1996) [astro-ph/9507023]CrossRefADSGoogle Scholar
  74. 74.
    Keil, W., Janka, H.T., Schramm, D.N., Sigl, G., Turner, M.S., Ellis, J.R.: A fresh look at axions and SN 1987A. Phys. Rev. D 56, 2419 (1997) [astro-ph/9612222]CrossRefADSGoogle Scholar
  75. 75.
    Hanhart, C., Phillips, D.R., Reddy, S.: Neutrino and axion emissivities of neutron stars from nucleon nucleon scattering data. Phys. Lett. B 499, 9 (2001) [astro-ph/0003445]CrossRefADSGoogle Scholar
  76. 76.
    Engel, J., Seckel, D., Hayes, A.C.: Emission and detectability of hadronic axions from SN 1987A. Phys. Rev. Lett. 65, 960 (1990)CrossRefADSGoogle Scholar
  77. 77.
    Hanhart, C., Pons, J.A., Phillips, D.R., Reddy, S.: The likelihood of GODs’ existence: Improving the SN 1987A constraint on the size of large compact dimensions. Phys. Lett. B 509, 1 (2001) [astro-ph/0102063]CrossRefADSGoogle Scholar
  78. 78.
    Raffelt, G., Seckel, D.: Multiple scattering suppression of the bremsstrahlung emission of neutrinos and axions in supernovae. Phys. Rev. Lett. 67, 2605 (1991)CrossRefADSGoogle Scholar
  79. 79.
    Raffelt, G., Seckel, D.: A selfconsistent approach to neutral current processes in supernova cores. Phys. Rev. D 52, 1780 (1995) [astro-ph/9312019]CrossRefADSGoogle Scholar
  80. 80.
    Raffelt, G., Seckel, D., Sigl, G.: Supernova neutrino scattering rates reduced by nucleon spin fluctuations: Perturbative limit. Phys. Rev. D 54, 2784 (1996) [astro-ph/9603044]CrossRefADSGoogle Scholar
  81. 81.
    Raffelt, G., Strobel, T.: Reduction of weak interaction rates in neutron stars by nucleon spin fluctuations: Degenerate case. Phys. Rev. D 55, 523 (1997) [astro-ph/9610193]CrossRefADSGoogle Scholar
  82. 82.
    Sigl, G.: Weak interactions in supernova cores and saturation of nucleon spin fluctuations. Phys. Rev. Lett. 76, 2625 (1996) [astro-ph/9508046]CrossRefADSGoogle Scholar
  83. 83.
    Raffelt, G., Sigl, G.: Numerical toy-model calculation of the nucleon spin autocorrelation function in a supernova core. Phys. Rev. D 60, 023001 (1999) [hep-ph/9808476]CrossRefADSGoogle Scholar
  84. 84.
    Yamada, S.: Reduction of neutrino nucleon scattering rate by nucleon nucleon collisions. Nucl. Phys. A 662, 219 (2000) [astro-ph/9907045]CrossRefADSGoogle Scholar
  85. 85.
    Sedrakian, A., Dieperink, A.E.L.: Coherent neutrino radiation in supernovae at two loops. Phys. Rev. D 62, 083002 (2000) [astro-ph/0002228]CrossRefADSGoogle Scholar
  86. 86.
    van Dalen, E.N.E., Dieperink, A.E.L., Tjon, J.A.: Neutrino emission in neutron stars. Phys. Rev. C 67, 065807 (2003) [nucl-th/0303037]Google Scholar
  87. 87.
    Sikivie, P.: Axion cosmology. In: Kuster M., Raffelt G., Beltrán B., (eds.) Lecture Notes in Physics, Vol. 741, pp. 51–71. Springer, Heidelberg (2008) [astro-ph/0610440]Google Scholar
  88. 88.
    Bradley, R., et al.: Microwave cavity searches for dark-matter axions. Rev. Mod. Phys. 75, 777 (2003)CrossRefADSGoogle Scholar
  89. 89.
    Asztalos, S.J., et al.: An improved RF cavity search for halo axions. Phys. Rev. D 69, 011101 (2004) [astro-ph/0310042]CrossRefADSGoogle Scholar
  90. 90.
    Duffy, L.D., et al.: A high resolution search for dark-matter axions. Phys. Rev. D 74, 012006 (2006) [astro-ph/0603108]CrossRefADSGoogle Scholar
  91. 91.
    Turner, M.S.: Thermal production of not so invisible axions in the early universe. Phys. Rev. Lett. 59, 2489 (1987); (E) ibid. 60, 1101 (1988)Google Scholar
  92. 92.
    Massó, E., Rota, F., Zsembinszki, G.: On axion thermalization in the early universe. Phys. Rev. D 66, 023004 (2002) [hep-ph/0203221]CrossRefADSGoogle Scholar
  93. 93.
    Chang, S., Choi, K.: Hadronic axion window and the big bang nucleosynthesis. Phys. Lett. B 316, 51 (1993) [hep-ph/9306216]CrossRefADSGoogle Scholar
  94. 94.
    Bershady, M.A., Ressell, M.T., Turner, M.S.: Telescope search for multi-eV axions. Phys. Rev. Lett. 66, 1398 (1991)CrossRefADSGoogle Scholar
  95. 95.
    Ressell, M.T.: Limits to the radiative decay of the axion. Phys. Rev. D 44, 3001 (1991)CrossRefADSGoogle Scholar
  96. 96.
    Grin, D., Covone, G., Kneib, J.P., Kamionkowski, M., Blain, A., Jullo, E.: A telescope search for decaying relic axions. Phys. Rev. D 75, 105018 (2007) [astro-ph/0611502]CrossRefADSGoogle Scholar
  97. 97.
    Hannestad, S., Raffelt, G.: Cosmological mass limits on neutrinos, axions, and other light particles. JCAP 0404, 008 (2004) [hep-ph/0312154]ADSGoogle Scholar
  98. 98.
    Hannestad, S., Mirizzi, A., Raffelt, G.: New cosmological mass limit on thermal relic axions. JCAP 0507, 002 (2005) [hep-ph/0504059]Google Scholar
  99. 99.
    Massáo, E., Toldra, R.: New constraints on a light spinless particle coupled to photons. Phys. Rev. D 55, 7967 (1997) [hep-ph/9702275]CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Georg G. Raffelt
    • 1
  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)80805 MünchenGermany

Personalised recommendations