Abstract
The cosmological properties of axions are reviewed. We discuss the axions produced by thermal processes in the early universe, the evolution of the average axion field between the Peccei-Quinn and QCD phase-transitions, the domain-wall problem and its possible resolutions, the population of cold axions produced by vacuum realignment, string decay and domain wall decay, and, finally, axion miniclusters and axion isocurvature perturbations.
Keywords
Domain Wall Velocity Dispersion Axion String Reheat Temperature Axion Decay Constant
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley, Redwood City, USA (1990)zbMATHGoogle Scholar
- 2.Massó, E., Rota, F., Zsembinszki, G.: On axion thermalization in the early universe. Phys. Rev. D 66, 023004 (2002) [hep-ph/0203221]Google Scholar
- 3.’t Hooft, G.: Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8 (1976)CrossRefADSGoogle Scholar
- 4.’t Hooft, G.: Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432 (1976); (E) ibid. 18, 2199 (1978)CrossRefADSGoogle Scholar
- 5.Sikivie, P.: Of axions, domain walls and the early universe. Phys. Rev. Lett. 48, 1156 (1982)CrossRefADSGoogle Scholar
- 6.Preskill, J., Wise, M.B., Wilczek, F.: Cosmology of the invisible axion. Phys. Lett. B 120, 127 (1983)CrossRefADSGoogle Scholar
- 7.Abbott, L.F., Sikivie, P.: A cosmological bound on the invisible axion. Phys. Lett. B 120, 133 (1983)CrossRefADSGoogle Scholar
- 8.Dine, M., Fischler, W.: The not-so-harmless axion. Phys. Lett. B 120, 137 (1983)CrossRefADSGoogle Scholar
- 9.Gross, D.J., Pisarski, R.D., Yaffe, L.G.: QCD and instantons at finite temperature. Rev. Mod. Phys. 53, 43 (1981)CrossRefADSMathSciNetGoogle Scholar
- 10.Chang, S., Hagmann, C., Sikivie, P.: Studies of the motion and decay of axion walls bounded by strings. Phys. Rev. D 59, 023505 (1999) [hep-ph/9807374]Google Scholar
- 11.Vilenkin, A., Everett, A.E., Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons. Phys. Rev. Lett. 48, 1867 (1982)CrossRefADSGoogle Scholar
- 12.Harari, D., Sikivie, P.: On the evolution of global strings in the early universe. Phys. Lett. B 195, 361 (1987)CrossRefADSGoogle Scholar
- 13.Shellard, E.P.S.: Cosmic string interactions. Nucl. Phys. B 283, 624 (1987)CrossRefADSGoogle Scholar
- 14.Hagmann, C., Sikivie, P.: Computer simulations of the motion and decay of global strings. Nucl. Phys. B 363, 247 (1991)CrossRefADSMathSciNetGoogle Scholar
- 15.Huang, M.C., Sikivie, P.: The structure of axionic domain walls. Phys. Rev. D 32, 1560 (1985)CrossRefADSGoogle Scholar
- 16.Vilenkin, A.: Gravitational field of vacuum domain walls and strings. Phys. Rev. D 23, 852 (1981)CrossRefADSGoogle Scholar
- 17.Ipser, J., Sikivie, P.: The gravitationally repulsive domain wall. Phys. Rev. D 30, 712 (1984)CrossRefADSMathSciNetGoogle Scholar
- 18.Vilenkin, A., Gravitational field of vacuum domain walls. Phys. Lett. B 133, 177 (1983)CrossRefADSMathSciNetGoogle Scholar
- 19.Perlmutter, S., et al.: (Supernova Cosmology Project Collaboration): Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999) [astro-ph/9812133]CrossRefADSGoogle Scholar
- 20.Riess, A.G., et al.: (Supernova Search Team Collaboration): Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998) [astro-ph/9805201]CrossRefADSGoogle Scholar
- 21.Lazarides, G., Shafi, Q.: Axion models with no domain wall problem. Phys. Lett. B 115, 21 (1982)CrossRefADSGoogle Scholar
- 22.Sikivie, P.: Axions in cosmology. In: Proc. Gif-sur-Yvette Summer School, September 6–10, 1982, published by the Institut National de Physique Nucleaire et de Physique des Particules (1983)Google Scholar
- 23.Yamaguchi, M., Kawasaki, M., Yokoyama, J.: Evolution of axionic strings and spectrum of axions radiated from them. Phys. Rev. Lett. 82, 4578 (1999) [hep-ph/9811311]CrossRefADSGoogle Scholar
- 24.Davis, R.L.: Goldstone bosons in string models of galaxy formation. Phys. Rev. D 32, 3172 (1985)CrossRefADSGoogle Scholar
- 25.Davis, R.L.: Cosmic axions from cosmic strings. Phys. Lett. B 180, 225 (1986)CrossRefADSGoogle Scholar
- 26.Vilenkin, A., Vachaspati, T.: Radiation of Goldstone bosons from cosmic strings. Phys. Rev. D 35, 1138 (1987)CrossRefADSGoogle Scholar
- 27.Davis, R.L., Shellard, E.P.S.: Do axions need inflation? Nucl. Phys. B 324, 167 (1989)Google Scholar
- 28.Dabholkar, A., Quashnock, J.M.: Pinning down the axion. Nucl. Phys. B 333, 815 (1990)CrossRefADSGoogle Scholar
- 29.Battye, R.A., Shellard, E.P.S.: Global string radiation. Nucl. Phys. B 423, 260 (1994) [astro-ph/9311017]CrossRefADSGoogle Scholar
- 30.Battye, R.A., Shellard, E.P.S.: Axion string constraints. Phys. Rev. Lett. 73, 2954 (1994); (E) ibid. 76, 2203 (1996) [astro-ph/9403018]Google Scholar
- 31.Hagmann, C., Chang, S., Sikivie, P.: Axion radiation from strings. Phys. Rev. D 63, 125018 (2001) [hep-ph/0012361]Google Scholar
- 32.Steinhardt, P.J., Turner, M.S.: Saving the invisible axion. Phys. Lett. B 129, 51 (1983)CrossRefADSGoogle Scholar
- 33.Lazarides, G., Panagiotakopoulos, C., Shafi, Q.: Relaxing the cosmological bound on axions. Phys. Lett. B 192, 323 (1987)CrossRefADSGoogle Scholar
- 34.Lazarides, G., Schaefer, R.K., Seckel, D., Shafi, Q.: Dilution of cosmological axions by entropy production. Nucl. Phys. B 346, 193 (1990)CrossRefADSGoogle Scholar
- 35.Unruh, W.G., Wald, R.M.: On damping mechanisms for coherent oscillations of axions. Phys. Rev. D 32, 831 (1985)CrossRefADSMathSciNetGoogle Scholar
- 36.Turner, M.S.: Quantitative analysis of the thermal damping of coherent axion oscillations. Phys. Rev. D 32, 843 (1985)CrossRefADSGoogle Scholar
- 37.DeGrand, T.A., Kephart, T.W., Weiler, T.J.: Invisible axions and the QCD phase transition in the early universe. Phys. Rev. D 33, 910 (1986)CrossRefADSGoogle Scholar
- 38.Hindmarsh, M.: Axions and the QCD phase transition. Phys. Rev. D 45, 1130 (1992)CrossRefADSGoogle Scholar
- 39.Kaplan, D.B., Zurek, K.M.: Exotic axions. Phys. Rev. Lett. 96, 041301 (2006) [hep-ph/0507236]CrossRefADSGoogle Scholar
- 40.Hill, C.T., Ross, G.G.: Models and new phenomenological implications of a class of pseudo-Goldstone bosons. Nucl. Phys. B 311, 253 (1988)CrossRefADSGoogle Scholar
- 41.Sikivie, P., Ipser, J.R.: Phase-space structure of cold dark matter halos. Phys. Lett. B 291, 288 (1992)CrossRefADSGoogle Scholar
- 42.Natarajan, A., Sikivie, P.: Robustness of discrete flows and caustics in cold dark matter cosmology. Phys. Rev. D 72, 083513 (2005) [astro-ph/0508049] and references thereinCrossRefADSGoogle Scholar
- 43.Hogan, C.J., Rees, M.J.: Axion miniclusters. Phys. Lett. B 205, 228 (1988)CrossRefADSGoogle Scholar
- 44.Kolb, E.W., Tkachev, I.I.: Axion miniclusters and Bose stars. Phys. Rev. Lett. 71, 3051 (1993) [hep-ph/9303313]CrossRefADSGoogle Scholar
- 45.Kolb, E.W., Tkachev, I.I.: Femtolensing and picolensing by axion miniclusters. Astrophys. J. 460, L25 (1996) [astro-ph/9510043]CrossRefADSGoogle Scholar
- 46.Axenides, M., Brandenberger, R.H., Turner, M.S.: Development of axion perturbations in an axion dominated universe. Phys. Lett. B 126, 178 (1983)CrossRefADSGoogle Scholar
- 47.Linde, A.D.: Generation of isothermal density perturbations in the inflationary universe. Phys. Lett. B 158, 375 (1985)CrossRefADSGoogle Scholar
- 48.Seckel, D., Turner, M.S.: Isothermal density perturbations in an axion dominated inflationary universe. Phys. Rev. D 32, 3178 (1985)CrossRefADSGoogle Scholar
- 49.Lyth, D.H.: A limit on the inflationary energy density from axion isocurvature fluctuations. Phys. Lett. B 236, 408 (1990)CrossRefADSGoogle Scholar
- 50.Turner, M.S., Wilczek, F.: Inflationary axion cosmology. Phys. Rev. Lett. 66, 5 (1991)CrossRefADSGoogle Scholar
- 51.Birrell, N.D., Davies, P.C.W.: Quantum Field Theory in Curved Space-Time. Cambridge University Press, Cambridge, England (1982)Google Scholar
- 52.Ford, L.H., Vilenkin, A.: Quantum radiation by moving mirrors. Phys. Rev. D 25, 2569 (1982)CrossRefADSMathSciNetGoogle Scholar
- 53.Linde, A.D.: A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)CrossRefADSMathSciNetGoogle Scholar
- 54.Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)CrossRefADSGoogle Scholar
- 55.Linde, A.D.: Axions in inflationary cosmology. Phys. Lett. B 259, 38 (1991)CrossRefADSGoogle Scholar
- 56.Lyth, D.H.: Axions and inflation: Sitting in the vacuum. Phys. Rev. D 45, 3394 (1992)CrossRefADSMathSciNetGoogle Scholar
- 57.Lyth, D.H., Stewart, E.D.: Constraining the inflationary energy scale from axion cosmology. Phys. Lett. B 283, 189 (1992)CrossRefADSGoogle Scholar
- 58.Lyth, D.H., Stewart, E.D.: Axions and inflation: String formation during inflation. Phys. Rev. D 46, 532 (1992)CrossRefADSGoogle Scholar
- 59.Mukhanov, V.F., Chibisov, G.V.: Quantum fluctuation and nonsingular universe. Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)]ADSGoogle Scholar
- 60.Hawking, S.W.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982)CrossRefADSGoogle Scholar
- 61.Guth, A.H., Pi, S.-Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110 (1982)CrossRefADSGoogle Scholar
- 62.Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983)CrossRefADSGoogle Scholar
- 63.Peiris, H.V., et al.: First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for inflation. Astrophys. J. Suppl. 148, 213 (2003) [astro-ph/0302225]CrossRefADSGoogle Scholar
- 64.Valiviita, J., Muhonen, V.: Correlated adiabatic and isocurvature CMB fluctuations in the wake of WMAP. Phys. Rev. Lett. 91, 131302 (2003) [astro-ph/0304175]CrossRefADSGoogle Scholar
- 65.Crotty, P., García-Bellido, J., Lesgourgues, J., Riazuelo, A.: Bounds on isocurvature perturbations from CMB and LSS data. Phys. Rev. Lett. 91, 171301 (2003) [astro-ph/0306286]CrossRefADSGoogle Scholar
- 66.Beltrán, M., García-Bellido, J., Lesgourgues, J.: Isocurvature bounds on axions revisited. Phys. Rev. D 75, 103507 (2007). [hep-ph/0606107]Google Scholar
- 67.Bean, R., Dunkley, J., Pierpaoli, E.: Constraining isocurvature initial conditions with WMAP 3-year data. Phys. Rev. D 74, 063503 (2006) [astro-ph/0606685], and references thereinCrossRefADSGoogle Scholar
- 68.Trotta, R.: The isocurvature fraction after WMAP 3-year data. Mon. Not. Roy. Astron. Soc. Lett. 375, L26 (2007). [astro-ph/0608116]Google Scholar
- 69.Sachs, R.K., Wolfe, A.M.: Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73 (1967)CrossRefADSGoogle Scholar
- 70.Peebles, P.J.E.: Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations, Astrophys. J. 263, L1 (1982)ADSGoogle Scholar
- 71.Abbott, L.F., Wise, M.B.: Large-scale anisotropy of the microwave background and the amplitude of energy density fluctuations in the early universe. Astrophys. J. 282, L47 (1984)CrossRefADSGoogle Scholar
- 72.Dodelson, S.: Modern Cosmology. Academic Press, San Diago, USA (2003)Google Scholar
- 73.Pi, S.-Y.: Inflation without tears. Phys. Rev. Lett. 52, 1725 (1984)CrossRefADSGoogle Scholar
- 74.Linde, A.D., Lyth, D.H.: Axionic domain wall production during inflation. Phys. Lett. B 246, 353 (1990)CrossRefADSGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2008