Advertisement

Axions pp 19-50 | Cite as

Axion Cosmology

  • Pierre Sikivie
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 741)

Abstract

The cosmological properties of axions are reviewed. We discuss the axions produced by thermal processes in the early universe, the evolution of the average axion field between the Peccei-Quinn and QCD phase-transitions, the domain-wall problem and its possible resolutions, the population of cold axions produced by vacuum realignment, string decay and domain wall decay, and, finally, axion miniclusters and axion isocurvature perturbations.

Keywords

Domain Wall Velocity Dispersion Axion String Reheat Temperature Axion Decay Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley, Redwood City, USA (1990)zbMATHGoogle Scholar
  2. 2.
    Massó, E., Rota, F., Zsembinszki, G.: On axion thermalization in the early universe. Phys. Rev. D 66, 023004 (2002) [hep-ph/0203221]Google Scholar
  3. 3.
    ’t Hooft, G.: Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8 (1976)CrossRefADSGoogle Scholar
  4. 4.
    ’t Hooft, G.: Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432 (1976); (E) ibid. 18, 2199 (1978)CrossRefADSGoogle Scholar
  5. 5.
    Sikivie, P.: Of axions, domain walls and the early universe. Phys. Rev. Lett. 48, 1156 (1982)CrossRefADSGoogle Scholar
  6. 6.
    Preskill, J., Wise, M.B., Wilczek, F.: Cosmology of the invisible axion. Phys. Lett. B 120, 127 (1983)CrossRefADSGoogle Scholar
  7. 7.
    Abbott, L.F., Sikivie, P.: A cosmological bound on the invisible axion. Phys. Lett. B 120, 133 (1983)CrossRefADSGoogle Scholar
  8. 8.
    Dine, M., Fischler, W.: The not-so-harmless axion. Phys. Lett. B 120, 137 (1983)CrossRefADSGoogle Scholar
  9. 9.
    Gross, D.J., Pisarski, R.D., Yaffe, L.G.: QCD and instantons at finite temperature. Rev. Mod. Phys. 53, 43 (1981)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Chang, S., Hagmann, C., Sikivie, P.: Studies of the motion and decay of axion walls bounded by strings. Phys. Rev. D 59, 023505 (1999) [hep-ph/9807374]Google Scholar
  11. 11.
    Vilenkin, A., Everett, A.E., Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons. Phys. Rev. Lett. 48, 1867 (1982)CrossRefADSGoogle Scholar
  12. 12.
    Harari, D., Sikivie, P.: On the evolution of global strings in the early universe. Phys. Lett. B 195, 361 (1987)CrossRefADSGoogle Scholar
  13. 13.
    Shellard, E.P.S.: Cosmic string interactions. Nucl. Phys. B 283, 624 (1987)CrossRefADSGoogle Scholar
  14. 14.
    Hagmann, C., Sikivie, P.: Computer simulations of the motion and decay of global strings. Nucl. Phys. B 363, 247 (1991)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Huang, M.C., Sikivie, P.: The structure of axionic domain walls. Phys. Rev. D 32, 1560 (1985)CrossRefADSGoogle Scholar
  16. 16.
    Vilenkin, A.: Gravitational field of vacuum domain walls and strings. Phys. Rev. D 23, 852 (1981)CrossRefADSGoogle Scholar
  17. 17.
    Ipser, J., Sikivie, P.: The gravitationally repulsive domain wall. Phys. Rev. D 30, 712 (1984)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Vilenkin, A., Gravitational field of vacuum domain walls. Phys. Lett. B 133, 177 (1983)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Perlmutter, S., et al.: (Supernova Cosmology Project Collaboration): Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999) [astro-ph/9812133]CrossRefADSGoogle Scholar
  20. 20.
    Riess, A.G., et al.: (Supernova Search Team Collaboration): Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998) [astro-ph/9805201]CrossRefADSGoogle Scholar
  21. 21.
    Lazarides, G., Shafi, Q.: Axion models with no domain wall problem. Phys. Lett. B 115, 21 (1982)CrossRefADSGoogle Scholar
  22. 22.
    Sikivie, P.: Axions in cosmology. In: Proc. Gif-sur-Yvette Summer School, September 6–10, 1982, published by the Institut National de Physique Nucleaire et de Physique des Particules (1983)Google Scholar
  23. 23.
    Yamaguchi, M., Kawasaki, M., Yokoyama, J.: Evolution of axionic strings and spectrum of axions radiated from them. Phys. Rev. Lett. 82, 4578 (1999) [hep-ph/9811311]CrossRefADSGoogle Scholar
  24. 24.
    Davis, R.L.: Goldstone bosons in string models of galaxy formation. Phys. Rev. D 32, 3172 (1985)CrossRefADSGoogle Scholar
  25. 25.
    Davis, R.L.: Cosmic axions from cosmic strings. Phys. Lett. B 180, 225 (1986)CrossRefADSGoogle Scholar
  26. 26.
    Vilenkin, A., Vachaspati, T.: Radiation of Goldstone bosons from cosmic strings. Phys. Rev. D 35, 1138 (1987)CrossRefADSGoogle Scholar
  27. 27.
    Davis, R.L., Shellard, E.P.S.: Do axions need inflation? Nucl. Phys. B 324, 167 (1989)Google Scholar
  28. 28.
    Dabholkar, A., Quashnock, J.M.: Pinning down the axion. Nucl. Phys. B 333, 815 (1990)CrossRefADSGoogle Scholar
  29. 29.
    Battye, R.A., Shellard, E.P.S.: Global string radiation. Nucl. Phys. B 423, 260 (1994) [astro-ph/9311017]CrossRefADSGoogle Scholar
  30. 30.
    Battye, R.A., Shellard, E.P.S.: Axion string constraints. Phys. Rev. Lett. 73, 2954 (1994); (E) ibid. 76, 2203 (1996) [astro-ph/9403018]Google Scholar
  31. 31.
    Hagmann, C., Chang, S., Sikivie, P.: Axion radiation from strings. Phys. Rev. D 63, 125018 (2001) [hep-ph/0012361]Google Scholar
  32. 32.
    Steinhardt, P.J., Turner, M.S.: Saving the invisible axion. Phys. Lett. B 129, 51 (1983)CrossRefADSGoogle Scholar
  33. 33.
    Lazarides, G., Panagiotakopoulos, C., Shafi, Q.: Relaxing the cosmological bound on axions. Phys. Lett. B 192, 323 (1987)CrossRefADSGoogle Scholar
  34. 34.
    Lazarides, G., Schaefer, R.K., Seckel, D., Shafi, Q.: Dilution of cosmological axions by entropy production. Nucl. Phys. B 346, 193 (1990)CrossRefADSGoogle Scholar
  35. 35.
    Unruh, W.G., Wald, R.M.: On damping mechanisms for coherent oscillations of axions. Phys. Rev. D 32, 831 (1985)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Turner, M.S.: Quantitative analysis of the thermal damping of coherent axion oscillations. Phys. Rev. D 32, 843 (1985)CrossRefADSGoogle Scholar
  37. 37.
    DeGrand, T.A., Kephart, T.W., Weiler, T.J.: Invisible axions and the QCD phase transition in the early universe. Phys. Rev. D 33, 910 (1986)CrossRefADSGoogle Scholar
  38. 38.
    Hindmarsh, M.: Axions and the QCD phase transition. Phys. Rev. D 45, 1130 (1992)CrossRefADSGoogle Scholar
  39. 39.
    Kaplan, D.B., Zurek, K.M.: Exotic axions. Phys. Rev. Lett. 96, 041301 (2006) [hep-ph/0507236]CrossRefADSGoogle Scholar
  40. 40.
    Hill, C.T., Ross, G.G.: Models and new phenomenological implications of a class of pseudo-Goldstone bosons. Nucl. Phys. B 311, 253 (1988)CrossRefADSGoogle Scholar
  41. 41.
    Sikivie, P., Ipser, J.R.: Phase-space structure of cold dark matter halos. Phys. Lett. B 291, 288 (1992)CrossRefADSGoogle Scholar
  42. 42.
    Natarajan, A., Sikivie, P.: Robustness of discrete flows and caustics in cold dark matter cosmology. Phys. Rev. D 72, 083513 (2005) [astro-ph/0508049] and references thereinCrossRefADSGoogle Scholar
  43. 43.
    Hogan, C.J., Rees, M.J.: Axion miniclusters. Phys. Lett. B 205, 228 (1988)CrossRefADSGoogle Scholar
  44. 44.
    Kolb, E.W., Tkachev, I.I.: Axion miniclusters and Bose stars. Phys. Rev. Lett. 71, 3051 (1993) [hep-ph/9303313]CrossRefADSGoogle Scholar
  45. 45.
    Kolb, E.W., Tkachev, I.I.: Femtolensing and picolensing by axion miniclusters. Astrophys. J. 460, L25 (1996) [astro-ph/9510043]CrossRefADSGoogle Scholar
  46. 46.
    Axenides, M., Brandenberger, R.H., Turner, M.S.: Development of axion perturbations in an axion dominated universe. Phys. Lett. B 126, 178 (1983)CrossRefADSGoogle Scholar
  47. 47.
    Linde, A.D.: Generation of isothermal density perturbations in the inflationary universe. Phys. Lett. B 158, 375 (1985)CrossRefADSGoogle Scholar
  48. 48.
    Seckel, D., Turner, M.S.: Isothermal density perturbations in an axion dominated inflationary universe. Phys. Rev. D 32, 3178 (1985)CrossRefADSGoogle Scholar
  49. 49.
    Lyth, D.H.: A limit on the inflationary energy density from axion isocurvature fluctuations. Phys. Lett. B 236, 408 (1990)CrossRefADSGoogle Scholar
  50. 50.
    Turner, M.S., Wilczek, F.: Inflationary axion cosmology. Phys. Rev. Lett. 66, 5 (1991)CrossRefADSGoogle Scholar
  51. 51.
    Birrell, N.D., Davies, P.C.W.: Quantum Field Theory in Curved Space-Time. Cambridge University Press, Cambridge, England (1982)Google Scholar
  52. 52.
    Ford, L.H., Vilenkin, A.: Quantum radiation by moving mirrors. Phys. Rev. D 25, 2569 (1982)CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Linde, A.D.: A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)CrossRefADSMathSciNetGoogle Scholar
  54. 54.
    Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)CrossRefADSGoogle Scholar
  55. 55.
    Linde, A.D.: Axions in inflationary cosmology. Phys. Lett. B 259, 38 (1991)CrossRefADSGoogle Scholar
  56. 56.
    Lyth, D.H.: Axions and inflation: Sitting in the vacuum. Phys. Rev. D 45, 3394 (1992)CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Lyth, D.H., Stewart, E.D.: Constraining the inflationary energy scale from axion cosmology. Phys. Lett. B 283, 189 (1992)CrossRefADSGoogle Scholar
  58. 58.
    Lyth, D.H., Stewart, E.D.: Axions and inflation: String formation during inflation. Phys. Rev. D 46, 532 (1992)CrossRefADSGoogle Scholar
  59. 59.
    Mukhanov, V.F., Chibisov, G.V.: Quantum fluctuation and nonsingular universe. Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)]ADSGoogle Scholar
  60. 60.
    Hawking, S.W.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982)CrossRefADSGoogle Scholar
  61. 61.
    Guth, A.H., Pi, S.-Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110 (1982)CrossRefADSGoogle Scholar
  62. 62.
    Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983)CrossRefADSGoogle Scholar
  63. 63.
    Peiris, H.V., et al.: First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for inflation. Astrophys. J. Suppl. 148, 213 (2003) [astro-ph/0302225]CrossRefADSGoogle Scholar
  64. 64.
    Valiviita, J., Muhonen, V.: Correlated adiabatic and isocurvature CMB fluctuations in the wake of WMAP. Phys. Rev. Lett. 91, 131302 (2003) [astro-ph/0304175]CrossRefADSGoogle Scholar
  65. 65.
    Crotty, P., García-Bellido, J., Lesgourgues, J., Riazuelo, A.: Bounds on isocurvature perturbations from CMB and LSS data. Phys. Rev. Lett. 91, 171301 (2003) [astro-ph/0306286]CrossRefADSGoogle Scholar
  66. 66.
    Beltrán, M., García-Bellido, J., Lesgourgues, J.: Isocurvature bounds on axions revisited. Phys. Rev. D 75, 103507 (2007). [hep-ph/0606107]Google Scholar
  67. 67.
    Bean, R., Dunkley, J., Pierpaoli, E.: Constraining isocurvature initial conditions with WMAP 3-year data. Phys. Rev. D 74, 063503 (2006) [astro-ph/0606685], and references thereinCrossRefADSGoogle Scholar
  68. 68.
    Trotta, R.: The isocurvature fraction after WMAP 3-year data. Mon. Not. Roy. Astron. Soc. Lett. 375, L26 (2007). [astro-ph/0608116]Google Scholar
  69. 69.
    Sachs, R.K., Wolfe, A.M.: Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73 (1967)CrossRefADSGoogle Scholar
  70. 70.
    Peebles, P.J.E.: Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations, Astrophys. J. 263, L1 (1982)ADSGoogle Scholar
  71. 71.
    Abbott, L.F., Wise, M.B.: Large-scale anisotropy of the microwave background and the amplitude of energy density fluctuations in the early universe. Astrophys. J. 282, L47 (1984)CrossRefADSGoogle Scholar
  72. 72.
    Dodelson, S.: Modern Cosmology. Academic Press, San Diago, USA (2003)Google Scholar
  73. 73.
    Pi, S.-Y.: Inflation without tears. Phys. Rev. Lett. 52, 1725 (1984)CrossRefADSGoogle Scholar
  74. 74.
    Linde, A.D., Lyth, D.H.: Axionic domain wall production during inflation. Phys. Lett. B 246, 353 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pierre Sikivie
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA
  2. 2.Theoretical Physics DivisionCERN CH-1211Genéve 23Switzerland

Personalised recommendations