Description logics have emerged as one of the most successful formalisms for knowledge representation and reasoning. They are now widely used as a basis for ontologies in the Semantic Web. To extend and analyse ontologies, automated methods for knowledge acquisition and mining are being sought for. Despite its importance for knowledge engineers, the learning problem in description logics has not been investigated as deeply as its counterpart for logic programs.

We propose the novel idea of applying evolutionary inspired methods to solve this task. In particular, we show how Genetic Programming can be applied to the learning problem in description logics and combine it with techniques from Inductive Logic Programming. We base our algorithm on thorough theoretical foundations and present a preliminary evaluation.


Logic Program Description Logic Learning Problem Genetic Operator Concept Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anglano, C., Giordana, A., Bello, G.L., Saitta, L.: An experimental evaluation of coevolutive concept learning. In: Proc. 15th International Conf. on Machine Learning, pp. 19–27. Morgan Kaufmann, San Francisco (1998)Google Scholar
  2. 2.
    Augier, S., Venturini, G., Kodratoff, Y.: Learning first order logic rules with a genetic algorithm. In: Fayyad, U.M., Uthurusamy, R. (eds.) The First International Conference on Knowledge Discovery and Data Mining, Montreal, Canada, August 20-21, 1995, pp. 20–21. AAAI Press, Stanford (1995)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Shavlik, J.W., Dietterich, T.G. (eds.) Readings in Machine Learning, pp. 201–204. Morgan Kaufmann, San Francisco (1990)Google Scholar
  6. 6.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experimental results. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR94), pp. 121–133. Morgan Kaufmann, San Francisco (1994)Google Scholar
  7. 7.
    Divina, F.: Evolutionary concept learning in first order logic: An overview. AI Commun. 19(1), 13–33 (2006)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Divina, F., Marchiori, E.: Evolutionary concept learning. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002. Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, 2002, pp. 343–350. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  9. 9.
    Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Hekanaho, J.: Background knowledge in GA-based concept learning. In: Proc. 13th International Conference on Machine Learning, pp. 234–242. Morgan Kaufmann, San Francisco (1996)Google Scholar
  11. 11.
    Iannone, L., Palmisano, I.: An algorithm based on counterfactuals for concept learning in the semantic web. In: Ali, M., Esposito, F. (eds.) Innovations in Applied Artificial Intelligence. Proceedings of the 18th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Bari, Italy, June 2005, pp. 370–379 (2005)Google Scholar
  12. 12.
    Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)zbMATHGoogle Scholar
  13. 13.
    Koza, J.R., Poli, R.: A genetic programming tutorial. In: Burke, E. (ed.) Introductory Tutorials in Optimization, Search and Decision Support (2003)Google Scholar
  14. 14.
    Lehmann, J., Hitzler, P.: Foundations of Refinement Operators for Description Logics. In: Proceedings of the 17th International Conference on Inductive Logic programming, ILP 2007 (2007)Google Scholar
  15. 15.
    Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)zbMATHGoogle Scholar
  16. 16.
    Muggleton, S.: Inverse entailment and progol. New Generation Computing 13(3&4), 245–286 (1995)CrossRefGoogle Scholar
  17. 17.
    Neri, F., Saitta, L.: Analysis of genetic algorithms evolution under pure selection. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 32–39. Morgan Kaufmann, San Francisco (1995)Google Scholar
  18. 18.
    Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Reiser, P.G.K., Riddle, P.J.: Evolution of logic programs: Part-of-speech tagging. In: 1999 Congress on Evolutionary Computation, Piscataway, NJ, pp. 1338–1345. IEEE Service Center, Los Alamitos (1999)Google Scholar
  20. 20.
    Richards, B.L., Mooney, R.J.: Refinement of first-order Horn-clause domain theories. Machine Learning 19(2), 95–131 (1995)Google Scholar
  21. 21.
    Tamaddoni-Nezhad, A., Muggleton, S.: A genetic algorithms approach to ILP. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 285–300. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Tamaddoni-Nezhad, A., Muggleton, S.: Searching the subsumption lattice by a genetic algorithm. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 243–252. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Wong, M.L., Leung, K.S.: Inducing logic programs with genetic algorithms: The genetic logic programming system. IEEE Expert 10(5), 68–76 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jens Lehmann
    • 1
  1. 1.University of Leipzig, Computer Science Department, Johannisgasse 26, D-04103 LeipzigGermany

Personalised recommendations