Advertisement

Efficient and Secure Comparison for On-Line Auctions

  • Ivan Damgård
  • Martin Geisler
  • Mikkel Krøigaard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4586)

Abstract

We propose a protocol for secure comparison of integers based on homomorphic encryption. We also propose a homomorphic encryption scheme that can be used in our protocol and makes it more efficient than previous solutions. Our protocol is well-suited for application in on-line auctions, both with respect to functionality and performance. It minimizes the amount of information bidders need to send, and for comparison of 16 bit numbers with security based on 1024 bit RSA (executed by two parties), our implementation takes 0.28 seconds including all computation and communication. Using precomputation, one can save a factor of roughly 10.

Keywords

Encryption Scheme Security Parameter Homomorphic Encryption Oblivious Transfer Active Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Groth, J.: Cryptography in subgroups of ℤn. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 50–65. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–472. Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: EC’99, pp. 129–139. ACM Press, New York (1999)Google Scholar
  6. 6.
    Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing encrypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis, University of Aarhus, Aarhus, Denmark (2007)Google Scholar
  10. 10.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)zbMATHCrossRefGoogle Scholar
  11. 11.
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Brands, S.: Rapid demonstration of linear relations connected by boolean operators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)Google Scholar
  15. 15.
    Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24, 106–110 (1978)zbMATHCrossRefGoogle Scholar
  16. 16.
    eBay Inc.: Bid increments (2006), Available online http://pages.ebay.com/help/buy/bid-increments.html

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Martin Geisler
    • 1
  • Mikkel Krøigaard
    • 1
  1. 1.BRICS, Dept. of Computer Science, University of Aarhus 

Personalised recommendations