Symbolic Model Checking of Infinite-State Systems Using Narrowing

  • Santiago Escobar
  • José Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4533)


Rewriting is a general and expressive way of specifying concurrent systems, where concurrent transitions are axiomatized by rewrite rules. Narrowing is a complete symbolic method for model checking reachability properties. We show that this method can be reinterpreted as a lifting simulation relating the original system and the symbolic system associated to the narrowing transitions. Since the narrowing graph can be infinite, this lifting simulation only gives us a semi-decision procedure for the failure of invariants. However, we propose new methods for folding the narrowing tree that can in practice result in finite systems that symbolically simulate the original system and can be used to algorithmically verify its properties. We also show how both narrowing and folding can be used to symbolically model check systems which, in addition, have state predicates, and therefore correspond to Kripke structures on which ACTL  ∗  and LTL formulas can be algorithmically verified using such finite symbolic abstractions.


Model Check Transition System Logic Programming Atomic Proposition Concurrent System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpuente, M., Falaschi, M., Vidal, G.: Partial Evaluation of Functional Logic Programs. ACM TOPLAS 20(4), 768–844 (1998)CrossRefGoogle Scholar
  2. 2.
    Antoy, S., Ariola, Z.M.: Narrowing the narrowing space. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 1–15. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Basu, S., Mukund, M., Ramakrishnan, C.R., Ramakrishnan, I.V., Verma, R.M.: Local and symbolic bisimulation using tabled constraint logic programming. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 166–180. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A.: Languages, rewriting systems, and verification of infinite-state systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 24–39. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bouajjani, A., Esparza, J.: Rewriting models of boolean programs. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 136–150. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bouajjani, A., Mayr, R.: Model checking lossy vector addition systems. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 323–333. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification over Infinite States. In: Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM TOPLAS 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)Google Scholar
  10. 10.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude: A High-Performance Logical Framework. Springer, Heidelberg (To appear 2007)zbMATHGoogle Scholar
  11. 11.
    Delzanno, G.: Constraint multiset rewriting. Technical report, DISI - Università di Genova (2002)Google Scholar
  12. 12.
    Delzanno, G., Podelski, A.: Constraint-based deductive model checking. STTT 3(3), 250–270 (2001)zbMATHGoogle Scholar
  13. 13.
    Denker, G., Meseguer, J., Talcott, C.L.: Protocol specification and analysis in Maude. In: Proc. of Workshop on Formal Methods and Security Protocols (1998)Google Scholar
  14. 14.
    Emerson, A., Namjoshi, K.: On model checking for nondeterministic infinite state systems. In: LICS 1998, pp. 70–80. IEEE Press, New York (1998)Google Scholar
  15. 15.
    Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL Protocol Analyzer and its meta-logical properties. Theoretical Computer Science (Elsevier) 367(1-2), 162–202 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrowing. Technical Report No. 2814, Department of Computer Science, University of Illinois at Urbana-Champaign (2007)Google Scholar
  17. 17.
    Farzan, A., Meseguer, J.: State space reduction of rewrite theories using invisible transitions. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 142–157. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Genet, T., Viet Triem Tong, V.: Reachability analysis of term rewriting systems with Timbuk. In: LPAR 2001. LNCS, vol. 2250, pp. 695–706. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Kesten, Y., Pnueli, A.: Control and data abstraction: The cornerstones of practical formal verification. STTT 4(2), 328–342 (2000)CrossRefGoogle Scholar
  22. 22.
    Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Formal Methods in System Design 6, 1–36 (1995)CrossRefGoogle Scholar
  23. 23.
    Martí-Oliet, N., Meseguer, J., Palomino, M.: Theoroidal maps as algebraic simulations. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 126–143. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. High-Order Symbolic Computation (to appear, 2007)Google Scholar
  25. 25.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Meseguer, J.: Multiparadigm logic programming. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992)Google Scholar
  27. 27.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)Google Scholar
  28. 28.
    Meseguer, J.: The Temporal Logic of Rewriting. Technical Report No. 2815, Department of Computer Science, University of Illinois at Urbana-Champaign (2007)Google Scholar
  29. 29.
    Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. In: Baader, F. (ed.) Automated Deduction – CADE-19. LNCS (LNAI), vol. 2741, pp. 2–16. Springer, Heidelberg (2003)Google Scholar
  30. 30.
    Ohsaki, H., Seki, H., Takai, T.: Recognizing boolean closed A-tree languages with membership conditional mechanism. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 483–498. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Saïdi, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    TeReSe, (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Google Scholar
  33. 33.
    Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Using language inference to verify omega-regular properties. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 45–60. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Santiago Escobar
    • 1
  • José Meseguer
    • 2
  1. 1.Universidad Politécnica de ValenciaSpain
  2. 2.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations