Modules over Monads and Linearity

  • André Hirschowitz
  • Marco Maggesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4576)

Abstract

Inspired by the classical theory of modules over a monoid, we give a first account of the natural notion of module over a monad. The associated notion of morphism of left modules (”linear” natural transformations) captures an important property of compatibility with substitution, in the heterogeneous case where ”terms” and variables therein could be of different types as well as in the homogeneous case. In this paper, we present basic constructions of modules and we show examples concerning in particular abstract syntax and lambda-calculus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive types. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 453–468. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of Computing 11(2), 200–222 (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. Journal of Functional Programming 9(1), 77–91 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ching, M.: Bar constructions for topological operads and the Goodwillie derivatives of the identity. Geom. Topol. 9, 833–933 (2005)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    The Coq Proof Assistant. http://coq.inria.fr
  6. 6.
    Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding (extended abstract). In: 14th Symposium on Logic in Computer Science, Trento, 1999, pp. 193–202. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  7. 7.
    Fiore, M.P.: On the structure of substitution. In: Invited address for the 22nd Mathematical Foundations of Programming Semantics Conf (MFPS XXII), DISI, University of Genova, Italy (2006)Google Scholar
  8. 8.
    Fiore, M.P., Turi, D.: Semantics of name and value passing. In: Logic in Computer Science, pp. 93–104 (2001)Google Scholar
  9. 9.
    Fresse, B.: Koszul duality of operads and homology of partition posets. In: Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, vol. 346 of Contemp. Math., pp. 115–215. Amer. Math. Soc., Providence, RI (2004)Google Scholar
  10. 10.
    Gabbay, M., Pitts, A.: A new approach to abstract syntax involving binders. In: 14th Symposium on Logic in Computer Science, Trento, 1999, pp. 214–224. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  11. 11.
    Ghani, N., Uustalu, T.: Explicit substitutions and higher-order syntax. In: MERLIN ’03. Proceedings of the 2003 ACM SIGPLAN workshop on Mechanized reasoning about languages with variable binding, Uppsala, Sweden, pp. 1–7. ACM Press, New York, NY, USA (2003)CrossRefGoogle Scholar
  12. 12.
    Hirschowitz, A., Maggesi, M.: The algebraicity of the lambda-calculus. arXiv:math/0607427v1 (2007)Google Scholar
  13. 13.
    Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: 14th Symposium on Logic in Computer Science, Trento, 1999, pp. 204–213. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  14. 14.
    Livernet, M.: From left modules to algebras over an operad: application to combinatorial Hopf algebras. arXiv:math/0607427v1 (2006)Google Scholar
  15. 15.
    Lane, S.M.: Categories for the working mathematician. In: Graduate Texts in Mathematics, 2nd edn., vol. 5, Springer-Verlag, New York (1998)Google Scholar
  16. 16.
    Markl, M.: Models for operads. arXiv:hep-th/9411208v1 (1994)Google Scholar
  17. 17.
    Markl, M.: A compactification of the real configuration space as an operadic completion. arXiv:hep-th/9608067v1 (1996)Google Scholar
  18. 18.
    Matthes, R., Uustalu, T.: Substitution in non-wellfounded syntax with variable binding. Theor. Comput. Sci. 327(1-2), 155–174 (2004)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Smirnov, V.A.: Homotopy theory of coalgebras. Math. USSR Izv 27, 575–592 (1986)MATHCrossRefGoogle Scholar
  20. 20.
    Tanaka, M., Power, J.: A unified category-theoretic formulation of typed binding signatures. In: MERLIN ’05. Proceedings of the 3rd ACM SIGPLAN workshop on Mechanized reasoning about languages with variable binding, Tallinn, Estonia, pp. 13–24. ACM Press, New York, NY, USA (2005)CrossRefGoogle Scholar
  21. 21.
    Tanaka, M., Power, J.: Pseudo-distributive laws and axiomatics for variable binding. Higher Order Symbol. Comput. 19(2-3), 305–337 (2006)MATHCrossRefGoogle Scholar
  22. 22.
    Zsidó, J.: Le lambda calcul vu comme monade initiale. Master’s thesis, Université de Nice – Laboratoire J. A. Dieudonné, 2005/06. Mémoire de Recherche – master 2.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • André Hirschowitz
    • 1
  • Marco Maggesi
    • 2
  1. 1.LJAD, Université de Nice Sophia–Antipolis, CNRS 
  2. 2.Università degli Studi di Firenze 

Personalised recommendations