A Grammatical Representation of Visibly Pushdown Languages

  • Joachim Baran
  • Howard Barringer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4576)

Abstract

Model-checking regular properties is well established and a powerful verification technique for regular as well as context-free program behaviours. Recently, through the use of ω-visibly pushdown languages (ωVPLs), defined by ω-visibly pushdown automata, model-checking of properties beyond regular expressiveness was made possible and shown to be still decidable even when the program’s model of behaviour is an ωVPL. In this paper, we give a grammatical representation of ωVPLs and the corresponding finite word languages – VPL. From a specification viewpoint, the grammatical representation provides a more natural representation than the automata approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [[AM04]]
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 202–211. ACM Press, New York (2004)CrossRefGoogle Scholar
  2. [[AM06]]
    Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. [[BB02]]
    Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, pp. 3–25. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. [[Eng92]]
    Engelfriet, J.: An elementary proof of double Greibach normal form. Information Processing Letters 44(6), 291–293 (1992)MATHCrossRefMathSciNetGoogle Scholar
  5. [[HMU01]]
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)MATHGoogle Scholar
  6. [[LMS04]]
    Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Joachim Baran
    • 1
  • Howard Barringer
    • 1
  1. 1.The University of Manchester, School of Computer Science, ManchesterUK

Personalised recommendations