Advertisement

Algorithms for Computing the Longest Parameterized Common Subsequence

  • Costas S. Iliopoulos
  • Marcin Kubica
  • M. Sohel Rahman
  • Tomasz Waleń
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4580)

Abstract

In this paper, we revisit the classic and well-studied longest common subsequence (LCS) problem and study some new variants, first introduced and studied by Rahman and Iliopoulos [Algorithms for Computing Variants of the Longest Common Subsequence Problem, ISAAC 2006]. Here we define a generalization of these variants, the longest parameterized common subsequence (LPCS) problem, and show how to solve it in O(n 2) and Open image in new window time. Furthermore, we show how to compute two variants of LCS, RELAG and RIFIG in Open image in new window time.

Keywords

Edit Distance Longe Common Subsequence Longe Common Subsequence Empty Queue Longe Common Subsequence Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economic construction of the transitive closure of a directed graph (english translation). Soviet Math. Dokl. 11, 1209–1210 (1975)Google Scholar
  2. 2.
    Baker, B.S.: Parameterized diff. In: Symposium of Discrete Algorithms (SODA), pp. 854–855 (1999)Google Scholar
  3. 3.
    Baker, B.S., Giancarlo, R.: Sparse dynamic programming for longest common subsequence from fragments. Journal of Algorithms 42(2), 231–254 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: String Processing and Information Retrieval (SPIRE), pp. 39–48. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press, McGraw Hill, Cambridge (1992)Google Scholar
  6. 6.
    Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence alignment algorithm for unrestricted cost matrices. In: Symposium of Discrete Algorithms (SODA), pp. 679–688 (2002)Google Scholar
  7. 7.
    Hadlock, F.: Minimum detour methods for string or sequence comparison. Congressus Numerantium 61, 263–274 (1988)MathSciNetGoogle Scholar
  8. 8.
    Hirschberg, D.S.: Algorithms for the longest common subsequence problem. Journal of ACM 24(4), 664–675 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest subsequences. Commun. ACM 20(5), 350–353 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Iliopoulos, C.S., Rahman, M.S.: Algorithms for computing variants of the longest common subsequence problem. Theoretical Computer Science (to appear)Google Scholar
  11. 11.
    Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM Journal of Computing 24(5), 1122–1139 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Problems in Information Transmission 1, 8–17 (1965)Google Scholar
  13. 13.
    Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25(2), 322–336 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2), 251–266 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mkinen, V., Navarro, G., Ukkonen, E.: Transposition invariant string matching. Journal of Algorithms 56, 124–153 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algorithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Rahman, M.S., Iliopoulos, C.S.: Algorithms for computing variants of the longest common subsequence problem. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 399–408. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of ACM 21(1), 168–173 (1974)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Costas S. Iliopoulos
    • 1
  • Marcin Kubica
    • 2
  • M. Sohel Rahman
    • 1
  • Tomasz Waleń
    • 2
  1. 1.Algorithm Design Group, Department of Computer Science, Kings College London, Strand, London WC2R 2LSEngland
  2. 2.Institute of Informatics, Warsaw University, Banacha 2, 02-097 WarszawaPoland

Personalised recommendations