On Proving the Absence of Oscillations in Models of Genetic Circuits

  • François Boulier
  • Marc Lefranc
  • François Lemaire
  • Pierre-Emmanuel Morant
  • Aslı Ürgüplü
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4545)


Using computer algebra methods to prove that a gene regulatory network cannot oscillate appears to be easier than expected. We illustrate this claim with a family of models related to historical examples.


Hopf Bifurcation Circadian Clock Real Root Gene Regulatory Network Negative Real Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morant, P.E., Vandermoere, C., Parent, B., Lemaire, F., Corellou, F., Schwartz, C., Bouget, F.Y., Lefranc, M.: Oscillateurs génétiques simples. Applications à l’horloge circadienne d’une algue unicellulaire. In: Proceedings of the Rencontre du non linéaire, Paris (2007),
  2. 2.
    McClung, C.R.: Plant Circadian Rhythms. The Plant Cell 18, 792–803 (2006)CrossRefGoogle Scholar
  3. 3.
    Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J. (eds.): Computational Cell Biology. Interdisciplinary Applied Mathematics, vol. 20. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  4. 4.
    Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (2004)Google Scholar
  5. 5.
    Françoise, J.P.: Oscillations en biologie. Mathématiques et Applications, vol. 46. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  6. 6.
    Hale, J.K., Koçak, H.: Dynamics and Bifurcations. Texts in Applied Mathematics, vol. 3. Springer, New York (1991)zbMATHGoogle Scholar
  7. 7.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I. Nonstiff problems, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer, New York (1993)zbMATHGoogle Scholar
  8. 8.
    Doedel, E.: AUTO software for continuation and bifurcation problems in ODEs (1996),
  9. 9.
    Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Software, Environments, and Tools, vol. 14, SIAM (2002)Google Scholar
  10. 10.
    El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software–component architecture. Journal of Symbolic Computation 30(2), 161–179 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wang, D., Xia, B.: Stability Analysis of Biological Systems with Real Solution Classification. In: proceedings of ISSAC 2005, Beijing, China 354–361 (2005)Google Scholar
  12. 12.
    Gatermann, K., Hosten, S.: Computational algebra for bifurcation theory. Journal of Symbolic Computation 40, 1180–1207 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gatermann, K., Eiswirth, M., Sensse, A.: Toric Ideals and graph theory to analyze Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40, 1361–1382 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. SIGSAM Bulletin 31(2), 2–9 (1997)CrossRefMathSciNetGoogle Scholar
  16. 16.
    El Din, M.S.: RAGLib (Real Algebraic Library Maple package) (2003),
  17. 17.
    Goodwin, B.C.: Temporal Organization in Cells. Academic Press, London (1963)Google Scholar
  18. 18.
    Goodwin, B.C.: In: Advances in Enzyme Regulation, vol. 3, p. 425. Pergamon Press, Oxford (1965)Google Scholar
  19. 19.
    Griffith, J.S.: Mathematics of Cellular Control Processes. I. Negative Feedback to One Gene. Journal of Theoretical Biology 20, 202–208 (1968)CrossRefGoogle Scholar
  20. 20.
    Selleck, W., Howley, R., Fang, Q., Podolny, V., Fried, M.G., Buratowski, S., Tan, S.: A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nature Structural Biology 8(8), 695–700 (2001)CrossRefGoogle Scholar
  21. 21.
    Ruoff, P., Rensing, L.: The Temperature–Compensated Goodwin Model Simulates Many Circadian Clock Properties. Journal of Theoretical Biology 179, 275–285 (1996)CrossRefGoogle Scholar
  22. 22.
    Ruoff, P., Vinsjevik, M., Mohsenzadeh, S., Rensing, L.: The Goodwin Model: Simulating the Effet of Cycloheximide and Heat Shock on the Sporulation Rhythm of Neurospora crassa. Journal of Theoretical Biology 196, 483–494 (1999)CrossRefGoogle Scholar
  23. 23.
    Kurosawa, G., Mochizuki, A., Iwasa, Y.: Comparative Study of Circadian Clock Models, in Search of Processes Promoting Oscillation. Journal of Theoretical Biology 216, 193–208 (2002)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. An introduction to computational algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics. Springer, New York (1992)zbMATHGoogle Scholar
  25. 25.
    Becker, T., Weispfenning, V.: Gröbner Bases: a computational approach to commutative algebra. Graduate Texts in Mathematics, vol. 141. Springer, Heidelberg (1991)Google Scholar
  26. 26.
    Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  27. 27.
    Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descartes’rule of signs. In: proceedings of ISSAC 1976, Yorktown Heights, NY, pp. 272–275 (1976)Google Scholar
  28. 28.
    Collins, G.E.: Quantifier Elimination for the Elementary Theory of Real Closed Fields by Cylindrical Algebraic Decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • François Boulier
    • 1
  • Marc Lefranc
    • 2
  • François Lemaire
    • 1
  • Pierre-Emmanuel Morant
    • 2
  • Aslı Ürgüplü
    • 1
  1. 1.University Lille I, LIFL, 59655 Villeneuve d’AscqFrance
  2. 2.University Lille I, PHLAM, 59655 Villeneuve d’AscqFrance

Personalised recommendations