Deducing Interactions in Partially Unspecified Biological Systems

  • Paolo Baldan
  • Andrea Bracciali
  • Linda Brodo
  • Roberto Bruni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4545)


We show how a symbolic approach to the semantics of process algebras can be fruitfully applied to the modeling and analysis of partially unspecified biological systems, i.e., systems whose components are not fully known, cannot be described entirely, or whose functioning is not completely understood. This adds a novel deductive perspective to the use of process algebras within systems biology: the investigation of the behavioural or structural properties that unspecified components must satisfy to interact within the system. These can be computationally inferred, extending the effectiveness of the in silico experiments. The use of the approach is illustrated by means of case studies.


Operational Semantic Process Algebra Symbolic Transition Virus Membrane Phage Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland (1994)Google Scholar
  2. Baldan, P., Bracciali, A., Bruni, R.: Bisimulation by unification. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 254–270. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. Baldan, P., Bracciali, A., Bruni, R.: Symbolic equivalences for open systems. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 1–17. Springer, Heidelberg (2005)Google Scholar
  4. Calder, M., Hilston, J., Gilmore, S.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Nielson, H.R. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the PRISM model checker. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 179–190. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. Cardelli, L.: Brane calculi-interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)Google Scholar
  8. Cardelli, L., Gordon, A.: Mobile ambients. Th. Comp. Sci. 240(1), 177–213 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Cardelli, L., Gordon, A.: Anytime, anywhere. Modal logics for mobile ambients. In: Proc. POPL 2000, pp. 365–377. ACM, New York (2000)Google Scholar
  10. Chiarugi, D., Curti, M., Degano, P., Marangoni, R.: VICE: A VIrtual CEll. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 207–220. Springer, Heidelberg (2005)Google Scholar
  11. Danos, V., Laneve, C.: Formal molecular biology. Th. Comp. Sci. 325(1), 69–110 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative experiments. In: Proc. QAPL 2006. ENTCS, vol. 164(3), pp. 101–117. Elsevier, North-Holland (2006)Google Scholar
  13. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway Logic: Symbolic analysis of biological signaling. In: Proc. Pacific Symp. on Biocomputing, pp. 400–412 (2002)Google Scholar
  14. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway Logic: Executable models of biological networks. In: Proc. Rewriting Logic and its Applications. ENCS, vol. 71 (2002)Google Scholar
  15. Gadducci, F., Montanari, U.: The Tile Model. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (1998)Google Scholar
  16. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  17. Gutnik, B., Pinto, D., Ermentrout, B.: Mathematical neuroscience: from neurons to circuits to systems. J. of Physiology 97, 209–219 (2003)Google Scholar
  18. Haller, O., Kochs, G.: Interferon-induced Mx proteins: Dynamin-like GTPases with antiviral activity. Traffic 3, 710–717 (2002)CrossRefGoogle Scholar
  19. Hennessy, M., Lin, H.: Symbolic bisimulations. Th. Comp. Sci. 138, 353–389 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  20. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. of Comp. Biology 9(1), 67–103 (2002)CrossRefGoogle Scholar
  21. Kitano, H.: Systems Biology: a brief overview. Science 295(5560), 1662–1664 (2002)CrossRefGoogle Scholar
  22. Lecca, P., Priami, C., Quaglia, P., Rossi, B., Laudanna, C., Costantin, G.: A stochastic process algebra approach to simulation of autoreactive lymphocyte recruitment. SIMULATION 80(4), 273–288 (2004)CrossRefGoogle Scholar
  23. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. Miculan, M., Bacci, G.: Modal logics for Brane Calculus. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 1–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. Nagasaki, M., Onami, S., Miyano, S., Kitano, H.: Bio-calculus: its concept and molecular interaction. Genome Informatics 10, 133–143 (1999)Google Scholar
  26. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Proc. Bioconcur 2004 (2004)Google Scholar
  27. Priami, C.: Stochastic π-calculus. The Computer Journal 38(6), 578–589 (1995)CrossRefGoogle Scholar
  28. Priami, C., Quaglia, P.: Beta-binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 21–34. Springer, Heidelberg (2005)Google Scholar
  29. Priami, C., Regev, A., Shapiro, E., Silvermann, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  30. Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartements. Th. Comp. Sci. 325(1), 141–167 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  31. Regev, A., Shapiro, E.: Cellular Abstractions: Cells as Computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  32. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Proc. Pacific Symp. on Biocomputing, pp. 459–470 (2001)Google Scholar
  33. Rensink, A.: Bisimilarity of open terms. Inform. and Comput. 156(1-2), 345–385 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  34. Surridge, C.: Computational biology. Nature Insight 420(6912), 206–246 (2002)Google Scholar
  35. Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway logic modeling of protein functional domains in signal transduction. In: Proc. Pacific Symp. on Biocomputing (2004)Google Scholar
  36. Yang, P., Ramakrishnan, C., Smolka, S.: A logical encoding of the pi-calculus: Model checking mobile processes using tabled resolution. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 86–101. Springer, Heidelberg (2002)Google Scholar
  37. Winnacker, E.L.: From Genes to Clones, VCH Publishers (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Andrea Bracciali
    • 2
  • Linda Brodo
    • 3
  • Roberto Bruni
    • 2
  1. 1.Dipartimento di Matematica Pura e Applicata, Università di PadovaItalia
  2. 2.Dipartimento di Informatica, Università di PisaItalia
  3. 3.Dipartimento di Scienze dei Linguaggi, Università di SassariItalia

Personalised recommendations