Protein Structure Prediction Using Residual Dipolar Couplings

  • Ioannis Z. Emiris
  • Sotirios I. Pantos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4545)


NMR is important for the determination of protein structures, but the usual NOE distance constraints cannot capture large structures. However, RDC experiments offer global orientation constraints for the H–N backbone vectors. Our first application validates local structure from 3 RDC values, by solving an elliptical equation. Second, we model the protein backbone by drawing upon robot kinematics, and compute the relative orientation of consecutive pairs of peptide planes; we obtain a unique orientation by considering also NOE distances. Third, we present a novel algebraic method for determining the relative orientation of secondary structures, a crucial question in fold classification. The orientation of the magnetic vector relative to the secondary structures is determined using two media, leading to a rotation matrix mapping one molecular frame to the other. A unique solution is obtained from RDC data, with no NOE constraints. Our algorithms use robust algebraic operations and are implemented in MAPLE.


Inverse kinematics MAPLE implementation polynomial equations protein fold protein kinematics RDC data Saupe tensor secondary structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrec, M.: Protein Structural Motif Recognition via NMR Residual Dipolar Couplings. J. Am. Chem. Soc. 123, 1222–1229 (2001)CrossRefGoogle Scholar
  2. 2.
    Al-Hashimi, H.M., Valafar, H., Terrell, M., Zartler, E.R., Eidsness, M.K., Prestegard, J.H.: Variation of Molecular Alignment as a Means of Resolving Orientational Ambiguities in Protein Structures from Dipolar Couplings. J. Magnetic Resonance 143, 402–406 (2000)CrossRefGoogle Scholar
  3. 3.
    Canet, D.: Nuclear Magnetic Resonance Concept and Methods. J. Wiley & Sons, West Sussex (1996)Google Scholar
  4. 4.
    Cornilescu, G., Marquardt, J.L., Ottiger, M., Bax, A.: Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase. J. Am. Chem. Soc. 120, 6836–6837 (1998)CrossRefGoogle Scholar
  5. 5.
    Losonczi, J.A., Andrec, M., Fischer, M.W.F., Prestegard, J.H.: Order Matrix Analysis of Residual Dipolar Couplings Using Singular Value Decomposition. J. Magnetic Resonance 138, 334–342 (1999)CrossRefGoogle Scholar
  6. 6.
    Levitt, M.H.: Spin Dynamics. J. Wiley & Sons, Chichester (2001)Google Scholar
  7. 7.
    Emiris, I.Z., Fritzilas, E.D., Manocha, D.: Algebraic algorithms for structure determination in biological chemistry. Intern. J. Quantum Chemistry 106, 190–210 (2006)CrossRefGoogle Scholar
  8. 8.
    Fowler, C.A., Tian, F., Al-Hashimi, H.M., Prestegard, J.H.: Rapid Determination of Protein Folds Using Residual Dipolar Couplings. J. Mol. Biol., 304, 447–460 (2000)CrossRefGoogle Scholar
  9. 9.
    Prestegard, J.H., Al-Hashimi, H.M., Tolman, J.R.: NMR structures of biomolecules using field oriented media and residual dipolar couplings. Quarterly Reviews of Biophysics 33, 371–424 (2000)CrossRefGoogle Scholar
  10. 10.
    Tjandra, N., Bax, A.: Direct Measurement of Distances and Angles in Biomolecules by NMR in a Dilute Liquid Crystalline Medium. Science 278, 1111–1114 (1997)CrossRefGoogle Scholar
  11. 11.
    Quine, J.R., Cross, T.A., Chapman, M.S., Bertram, R.: Mathematical Aspects of Protein Structure Determination with NMR Orientational Restraints. Bulletin of Math Biology 66, 1705–1730 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Wang, L., Donald, B.R.: Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure. J. Biomolecular NMR 29, 223–242 (2004)CrossRefGoogle Scholar
  13. 13.
    Wedemeyer, W.J., Rohl, C.A., Scheraga, H.A.: Exact solutions for chemical bond orientations from residual dipolar couplings. J. Biomolecular NMR 22, 137–151 (2002)CrossRefGoogle Scholar
  14. 14.
    Zhang, M., White, R.A., Wang, L., Goldman, R., Kavraki, L., Hassett, B.: Improving conformational searches by geometric screening. Bioinformatics 21, 624–630 (2005)CrossRefGoogle Scholar
  15. 15.
    Clore, G.M., Gronenborn, A.M., Bax, A.: A Robust Method for Determining the Magnitude of the Fully Asymmetric Alignment Tensor of Oriented Macromolecules in the Absence of Structural Information. J. Magnetic Resonance 133, 216–221 (1998)CrossRefGoogle Scholar
  16. 16.
    Hus, J., Peti, W., Griesinger, C., Brüschweiler, R.: Self-Consistency Analysis of Dipolar Couplings in Multiple Alignments of Ubiquitin. J. Am.Chem.Soc. 125, 5596–5597 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ioannis Z. Emiris
    • 1
  • Sotirios I. Pantos
    • 2
  1. 1.Department of Informatics and Telecommunications, National Kapodistrian University of Athens, Panepistimiopolis 15784Greece
  2. 2.Department of Biology, National Kapodistrian University of Athens, Panepistimiopolis 15784Greece

Personalised recommendations