Stanley: The Robot That Won the DARPA Grand Challenge

  • Sebastian Thrun
  • Mike Montemerlo
  • Hendrik Dahlkamp
  • David Stavens
  • Andrei Aron
  • James Diebel
  • Philip Fong
  • John Gale
  • Morgan Halpenny
  • Gabriel Hoffmann
  • Kenny Lau
  • Celia Oakley
  • Mark Palatucci
  • Vaughan Pratt
  • Pascal Stang
  • Sven Strohband
  • Cedric Dupont
  • Lars-Erik Jendrossek
  • Christian Koelen
  • Charles Markey
  • Carlo Rummel
  • Joe van Niekerk
  • Eric Jensen
  • Philippe Alessandrini
  • Gary Bradski
  • Bob Davies
  • Scott Ettinger
  • Adrian Kaehler
  • Ara Nefian
  • Pamela Mahoney
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 36)

Abstract

This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge. Stanley was developed for high-speed desert driving without human intervention. The robot’s software system relied predominately on state-of-the-art AI technologies, such as machine learning and probabilistic reasoning. This article describes the major components of this architecture, and discusses the results of the Grand Challenge race.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks and Iagnemma, 2005.
    Brooks, C. and Iagnemma, K. (2005). Vibration-based terrain classification for planetary exploration rovers. IEEE Transactions on Robotics, 21(6):1185–1191.CrossRefGoogle Scholar
  2. Crisman and Thorpe, 1993.
    Crisman, J. and Thorpe, C. (1993). SCARF: a color vision system that tracks roads and intersections. IEEE Transactions on Robotics and Automation, 9(1):49–58.CrossRefGoogle Scholar
  3. DARPA, 2004.
    DARPA (2004). Darpa grand challenge rulebook. On the Web at http://www.darpa.mil/grandchallenge05/Rules_8oct04.pdf.
  4. Davies and Lienhart, 2006.
    Davies, B. and Lienhart, R. (2006). Using CART to segment road images. In Proceedings SPIE Multimedia Content Analysis, Management, and Retrieval, San Jose, CA.Google Scholar
  5. Dickmanns, 2002.
    Dickmanns, E. (2002). Vision for ground vehicles: history and prospects. International Journal of Vehicle Autonomous Systems, 1(1):1–44.CrossRefGoogle Scholar
  6. Dickmanns et al., 1994
    Dickmanns, E., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., Schiehlen, J., and Thomanek, F. (1994). The seeing passenger car VaMoRs-P. In Proceedings of the International Symposium on Intelligent Vehicles, Paris, France.Google Scholar
  7. Dima and Hebert, 2005.
    Dima, C. and Hebert, M. (2005). Active learning for outdoor obstacle detection. In Thrun, S., Sukhatme, G., Schaal, S., and Brock, O., editors, Proceedings of the Robotics Science and Systems Conference, Cambridge, MA.Google Scholar
  8. Duda and Hart, 1973.
    Duda, R. and Hart, P. (1973). Pattern classification and scene analysis. Wiley, New York.MATHGoogle Scholar
  9. Ettinger et al., 2003
    Ettinger, S., Nechyba, M., Ifju, P., and Waszak, M. (2003). Vision-guided flight stability and control for micro air vehicles. Advanced Robotics, 17:617–640.CrossRefGoogle Scholar
  10. Farrell and Barth, 1999.
    Farrell, J. and Barth, M. (1999). The Global Positioning System. McGraw-Hill.Google Scholar
  11. Gat, 1998.
    Gat, E. (1998). Three-layered architectures. In Kortenkamp, D., Bonasso, R., and Murphy, R., editors, AI-based Mobile Robots: Case Studies of Successful Robot Systems, pages 195–210. MIT Press, Cambridge, MA.Google Scholar
  12. Gillespie, 1992.
    Gillespie, T. (1992). Fundamentals of Vehicle Dynamics. SAE Publications, Warrendale, PA.Google Scholar
  13. Happold et al., 2006
    Happold, M., Ollis, M., and Johnson, N. (2006). Enhancing supervised terrain classification with predictive unsupervised learning. In Sukhatme, G., Schaal, S., Burgard, W., and Fox, D., editors, Proceedings of the Robotics Science and Systems Conference, Philadelphia, PA.Google Scholar
  14. Hebert et al., 1997
    Hebert, M., Thorpe, C., and Stentz, A. (1997). Intelligent Unmanned Ground Vehicles: Autonomous Navigation Research at Carnegie Mellon University. Kluwer Academic Publishers.Google Scholar
  15. Iagnemma et al., 2004
    Iagnemma, K. and Dubowsky, S. (2004). Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with application to Planetary Rovers. Springer Tracts in Advanced Robotics (STAR) Series, Berlin, Germany.Google Scholar
  16. Julier and Uhlmann, 1997.
    Julier, S. and Uhlmann, J. (1997). A new extension of the Kalman filter to nonlinear systems. In International Symposium on Aerospace/Defense Sensing, Simulate and Controls, Orlando, FL.Google Scholar
  17. Kelly and Stentz, 1998.
    Kelly, A. and Stentz, A. (1998). Rough terrain autonomous mobility, part 1: A theoretical analysis of requirements. Autonomous Robots, 5:129–161.CrossRefGoogle Scholar
  18. Ko and Simmons, 1998.
    Ko, N. and Simmons, R. (1998). The lane-curvature method for local obstacle avoidance. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Victoria, Canada.Google Scholar
  19. Pomerleau and Jochem, 1996.
    Pomerleau, D. and Jochem, T. (1996). Rapidly adapting machine vision for automated vehicle steering. IEEE Expert, 11(2):19–27.CrossRefGoogle Scholar
  20. Pomerleau, 1991.
    Pomerleau, D. A. (1991). Rapidly adapting neural networks for autonomous navigation. In Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Information Processing Systems 3, pages 429–435, San Mateo. Morgan Kaufmann.Google Scholar
  21. Pomerleau, 1993.
    Pomerleau, D. A. (1993). Knowledge-based training of artificial neural networks for autonomous robot driving. In Connell, J. H. and Mahadevan, S., editors, Robot Learning, pages 19–43. Kluwer Academic Publishers.Google Scholar
  22. Simmons and Apfelbaum, 1998.
    Simmons, R. and Apfelbaum, D. (1998). A task description language for robot control. In Proceedings of the Conference on Intelligent Robots and Systems (IROS), Victoria, CA.Google Scholar
  23. van der Merwe, 2004.
    van der Merwe, R. (2004). Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. PhD thesis, OGI School of Science & Engineering.Google Scholar
  24. van der Merwe and Wan, 2004.
    van der Merwe, R. and Wan, E. (2004). Sigma-point kalman filters for integrated navigation. In Proceedings of the 60th Annual Meeting of The Institute of Navigation (ION), Dayton, OH.Google Scholar
  25. Wellington et al., 2005
    Wellington, C., Courville, A., and Stentz, A. (2005). Interacting markov random fields for simultaneous terrain modeling and obstacle detection. In Thrun, S., Sukhatme, G., Schaal, S., and Brock, O., editors, Proceedings of the Robotics Science and Systems Conference, Cambridge, MA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sebastian Thrun
    • 1
  • Mike Montemerlo
    • 1
  • Hendrik Dahlkamp
    • 1
  • David Stavens
    • 1
  • Andrei Aron
    • 1
  • James Diebel
    • 1
  • Philip Fong
    • 1
  • John Gale
    • 1
  • Morgan Halpenny
    • 1
  • Gabriel Hoffmann
    • 1
  • Kenny Lau
    • 1
  • Celia Oakley
    • 1
  • Mark Palatucci
    • 1
  • Vaughan Pratt
    • 1
  • Pascal Stang
    • 1
  • Sven Strohband
    • 2
  • Cedric Dupont
    • 2
  • Lars-Erik Jendrossek
    • 2
  • Christian Koelen
    • 2
  • Charles Markey
    • 2
  • Carlo Rummel
    • 2
  • Joe van Niekerk
    • 2
  • Eric Jensen
    • 2
  • Philippe Alessandrini
    • 2
  • Gary Bradski
    • 3
  • Bob Davies
    • 3
  • Scott Ettinger
    • 3
  • Adrian Kaehler
    • 3
  • Ara Nefian
    • 3
  • Pamela Mahoney
    • 4
  1. 1.Stanford Artificial Intelligence LaboratoryStanford UniversityStanford
  2. 2.Electronics Research LaboratoryVolkswagen of America, Inc.Palo Alto
  3. 3.Intel ResearchSanta Clara
  4. 4.Mohr Davidow VenturesMenlo Park

Personalised recommendations