Advertisement

Equational Systems and Free Constructions (Extended Abstract)

  • Marcelo Fiore
  • Chung-Kil Hur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)

Abstract

The purpose of this paper is threefold: to present a general abstract, yet practical, notion of equational system; to investigate and develop a theory of free constructions for such equational systems; and to illustrate the use of equational systems as needed in modern applications, specifically to the theory of substitution in the presence of variable binding and to models of name-passing process calculi.

Keywords

Monoidal Category Free Algebra Equational System Abstract Syntax Functorial Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, pp. 1–168. Oxford University Press, Oxford (1994)Google Scholar
  2. 2.
    Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  3. 3.
    Cîrstea, C.: An algebra-coalgebra framework for system specification. In: Proc. 3rd International Workshop on Coalgebraic Methods in Computer Science. ENTCS, vol. 33, pp. 80–110. Elsevier, Amsterdam (2000)Google Scholar
  4. 4.
    Day, B.: On closed categories of functors. In: Reports of the Midwest Category Seminar IV. LNM, vol. 137, pp. 1–38. Springer, Heidelberg (1970)CrossRefGoogle Scholar
  5. 5.
    Fiore, M., Moggi, E., Sangiorgi, D.: A fully abstract model for the π-calculus. Information and Computation 179(1), 76–117 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proc. 14th IEEE Symp. Logic in Computer Science, pp. 193–202. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  7. 7.
    Fokkinga, M.: Datatype laws without signatures. Mathematical Structures in Computer Science 6(1), 1–32 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gabbay, M.J., Pitts, A.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2001)CrossRefGoogle Scholar
  9. 9.
    Ghani, N., Lüth, C.: Rewriting via coinserters. Nordic Journal of Computing 10(4), 290–312 (2003)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ghani, N., Lüth, C., De Marchi, F., Power, A.J.: Dualising initial algebras. Mathematical Structures in Computer Science 13(2), 349–370 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goguen, J., Thatcher, J., Wagner, E.: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Yeh, R. (ed.) Current Trends in Programming Methodology: Software Specification and Design, vol. IV, chapter 5, pp. 80–149. Prentice Hall, Englewood Cliffs (1978)Google Scholar
  12. 12.
    Hamana, M.: Free Σ-monoids: A higher-order syntax with metavariables. In: Wei-Ngan Chin (ed.) Second Asian Symp. Programming Languages and Systems. LNCS, vol. 3302, pp. 348–363. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Hennessy, M., Plotkin, G.: Full abstraction for a simple parallel programming language. In: Becvar, J. (ed.) Mathematical Foundations of Computer Science. LNCS, vol. 74, pp. 108–120. Springer, Heidelberg (1979)Google Scholar
  14. 14.
    Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. Journal of Pure and Applied Algebra 89, 163–179 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23 (1972)Google Scholar
  16. 16.
    Plotkin, G.: Domains. Pisa Notes on Domain Theory (1983)Google Scholar
  17. 17.
    Plotkin, G., Power, A.J.: Algebraic operations and generic effects. Applied Categorical Structures 11(1), 69–94 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Plotkin, G., Power, A.J.: Computational effects and operations: An overview. In: Proc. Workshop on Domains VI. ENTCS, vol. 73, pp. 149–163. Elsevier, Amsterdam (2004)Google Scholar
  19. 19.
    Power, A.J.: Enriched Lawvere theories. Theory and Applications of Categories 6, 83–93 (1999)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Robinson, E.: Variations on algebra: Monadicity and generalisations of equational theories. Formal Aspects of Computing 13(3–5), 308–326 (2002)zbMATHCrossRefGoogle Scholar
  21. 21.
    Stark, I.: Free-algebra models for the π-calculus. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 155–169. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Worrell, J.: Terminal sequences for accessible endofunctors. In: Proc. 2nd International Workshop on Coalgebraic Methods in Computer Science. ENTCS, vol. 19, Elsevier, Amsterdam (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marcelo Fiore
    • 1
  • Chung-Kil Hur
    • 1
  1. 1.Computer Laboratory, University of Cambridge 

Personalised recommendations