Ring Signatures of Sub-linear Size Without Random Oracles

  • Nishanth Chandran
  • Jens Groth
  • Amit Sahai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)

Abstract

Ring signatures, introduced by Rivest, Shamir and Tauman, enable a user to sign a message anonymously on behalf of a “ring”. A ring is a group of users, which includes the signer. We propose a ring signature scheme that has size \(\mathcal{O}(\sqrt N)\) where N is the number of users in the ring. An additional feature of our scheme is that it has perfect anonymity.

Our ring signature like most other schemes uses the common reference string model. We offer a variation of our scheme, where the signer is guaranteed anony- mity even if the common reference string is maliciously generated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BB04]
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  2. [BF03]
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. [BGN05]
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)Google Scholar
  4. [BKM06]
    Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. [Boy07]
    Boyen, X.: Mesh signatures. In: Advances in Cryptology—EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007), available at http://www.cs.stanford.edu/~xb/eurocrypt07b/ CrossRefGoogle Scholar
  6. [BW06]
    Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. [CWLY06]
    Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring Signatures without Random Oracles. In: ASIACCS 2006. Proceedings of the 2006 ACM Symposium on Information, Taipei, Taiwan. Computer and Communications Security, pp. 297–302. ACM Press, New York (2006)CrossRefGoogle Scholar
  8. [DKNS04]
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)Google Scholar
  9. [GOS06]
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge for np. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. [GS06]
    Groth, J., Sahai, A.: Efficient non-interactive proofs for bilinear groups. Manuscript (2006)Google Scholar
  11. [JSI96]
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  12. [Len87]
    Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)CrossRefMathSciNetGoogle Scholar
  13. [Nao02]
    Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. [RST06]
    Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret: Theory and applications of ring signatures. In: Essays in Memory of Shimon Even (2006)Google Scholar
  15. [SW06]
    Shacham, H., Waters, B.: Efficient ring signatures without random oracles (2006), available at http://eprint.iacr.org/2006/289.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Nishanth Chandran
    • 1
  • Jens Groth
    • 1
  • Amit Sahai
    • 1
  1. 1.UCLA Computer Science Department, 4732 Boelter Hall, Los Angeles CA 90095USA

Personalised recommendations