A Characterization of Non-interactive Instance-Dependent Commitment-Schemes (NIC)

  • Bruce Kapron
  • Lior Malka
  • Venkatesh Srinivasan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)


We provide a new characterization of certain zero-knowledge protocols as non-interactive instance-dependent commitment-schemes (NIC). To obtain this result we consider the notion of V-bit protocols, which are very common, and found many applications in zero-knowledge. Our characterization result states that a protocol has a V-bit zero-knowledge protocol if and only if it has a NIC. The NIC inherits its hiding property from the zero-knowledge property of the protocol, and vice versa.

Our characterization result yields a framework that strengthens and simplifies many zero-knowledge protocols in various settings. For example, applying this framework to the result of Micciancio et al. [18] (who showed that some problems, including Graph-Nonisomorphism and Quadratic-Residuousity, unconditionally have a concurrent zero-knowledge proof) we easily get that arbitrary, monotone boolean formulae over a large class of problems (which contains, e.g., the complement of any random self-reducible problem) unconditionally have a concurrent zero-knowledge proof.


zero-knowledge commitment-schemes random self-reducibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiello, W., Håstad, J.: Statistical zero-knowledge languages can be recognized in two rounds. J. of Computer and System Sciences 42(3), 327–345 (1991)zbMATHCrossRefGoogle Scholar
  2. 2.
    Angluin, D., Lichtenstein, D.: Provable security in cryptosystems: a survey. Technical Report 288, Department of Computer Science, Yale University (1983)Google Scholar
  3. 3.
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)Google Scholar
  4. 4.
    Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds. In: 22nd STOC, pp. 482–493 (1990)Google Scholar
  5. 5.
    Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the ICM, pp. 1444–1451 (1986)Google Scholar
  6. 6.
    Boppana, R.B., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Inf. Process. Lett. 25(2), 127–132 (1987)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI and Uni. of Amsterdam (1996)Google Scholar
  8. 8.
    Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Public Key Cryptography, pp. 354–372 (2000)Google Scholar
  9. 9.
    Dåmgard, I., Cramer, R.: On monotone function closure of perfect and statistical zero-knowledge (1996)Google Scholar
  10. 10.
    Damgård, I.B.: On the existence of bit commitment schemes and zero-knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 17–27. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Damgård, I.B.: On Σ-protocols (2005), available online at
  12. 12.
    Fortnow, L.: The complexity of perfect zero-knowledge. In: Micali, S. (ed.) Advances in Computing Research, vol. 5, pp. 327–343. JAC Press (1989)Google Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive. J. Cryptology 10(1), 37–50 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Micali, S., Pass, R.: Local zero knowledge. In: STOC, pp. 306–315 (2006)Google Scholar
  18. 18.
    Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.P.: Concurrent zero knowledge without complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)zbMATHCrossRefGoogle Scholar
  21. 21.
    Nguyen, M.-H., Vadhan, S.: Zero knowledge with efficient provers. In: STOC 2006. Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, Seattle, WA, USA, pp. 287–295. ACM Press, New York (2006)CrossRefGoogle Scholar
  22. 22.
    Ong, S.J., Vadhan, S.: Zero knowledge and soundness are symmetric. Electronic Colloquium on Computational Complexity (ECCC) (TR06-139) (2006)Google Scholar
  23. 23.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)Google Scholar
  24. 24.
    Sahai, A., Vadhan, S.P.: A complete problem for statistical zero-knowledge. J. ACM 50(2), 196–249 (2003)CrossRefMathSciNetGoogle Scholar
  25. 25.
    De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula closure of SZK. In: IEEE Symposium on Foundations of Computer Science, pp. 454–465. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  26. 26.
    Tompa, M., Woll, H.: Random self-reducibility and zero-knowledge interactive proofs of possession of information. In: 28th FOCS, pp. 472–482 (1987)Google Scholar
  27. 27.
    Vadhan, S.P.: An unconditional study of computational zero knowledge. In: FOCS, pp. 176–185 (2004)Google Scholar
  28. 28.
    Watrous, J.: Zero-knowledge against quantum attacks. In: STOC, pp. 296–305 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bruce Kapron
    • 1
  • Lior Malka
    • 1
  • Venkatesh Srinivasan
    • 1
  1. 1.Department of Computer Science, University of Victoria, BCCanada

Personalised recommendations