Labeling Schemes for Vertex Connectivity

  • Amos Korman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4596)


This paper studies labeling schemes for the vertex connectivity function on general graphs. We consider the problem of labeling the nodes of any n-node graph is such a way that given the labels of two nodes u and v, one can decide whether u and v are k-vertex connected in G, i.e., whether there exist k vertex disjoint paths connecting u and v. The paper establishes an upper bound of k 2logn on the number of bits used in a label. The best previous upper bound for the label size of such labeling scheme is 2 k logn.


Graph algorithms vertex-connectivity labeling schemes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. In: Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2003)Google Scholar
  2. 2.
    Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A Survey and a new Distributed Algorithm. Theory of Computing Systems 37, 441–456 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2001)Google Scholar
  4. 4.
    Alstrup, S., Rauhe, T.: Improved Labeling Scheme for Ancestor Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2002)Google Scholar
  5. 5.
    Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: Proc. 43’rd annual IEEE Symp. on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  6. 6.
    Breuer, M.A.: Coding the vertexes of a graph. IEEE Trans. on Information Theory IT-12, 148–153 (1966)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Breuer, M.A., Folkman, J.: An unexpected result on coding the vertices of a graph. J. of Mathematical Analysis and Applications 20, 583–600 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. In: Proc. 13th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2002)Google Scholar
  9. 9.
    Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. In: Proc. 21st ACM Symp. on Principles of Database Systems (June 2002)Google Scholar
  10. 10.
    Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Proc. 19th Symp. on Theoretical Aspects of Computer Science (March 2002)Google Scholar
  12. 12.
    Gavoille, C., Paul, C.: Split decomposition and distance labelling: an optimal scheme for distance hereditary graphs. In: Proc. European Conf. on Combinatorics, Graph Theory and Applications (September 2001)Google Scholar
  13. 13.
    Gavoille, C., Peleg, D.: Compact and Localized Distributed Data Structures. J. of Distributed Computing 16, 111–120 (2003)CrossRefGoogle Scholar
  14. 14.
    Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance Labeling Schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–488. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, pp. 210–219. ACM Press, New York (2001)Google Scholar
  16. 16.
    Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. on Descrete Math 5, 596–603 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kaplan, H., Milo, T.: Short and simple labels for small distances and other functions. In: Workshop on Algorithms and Data Structures (August 2001)Google Scholar
  18. 18.
    Kaplan, H., Milo, T.: Parent and ancestor queries using a compact index. In: Proc. 20th ACM Symp. on Principles of Database Systems (May 2001)Google Scholar
  19. 19.
    Kaplan, H., Milo, T., Shabo, R.: A Comparison of Labeling Schemes for Ancestor Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2002)Google Scholar
  20. 20.
    Katz, M., Katz, N.A., Peleg, D.: Distance labeling schemes for well-separated graph classes. In: Proc. 17th Symp. on Theoretical Aspects of Computer Science, pp. 516–528 (February 2000)Google Scholar
  21. 21.
    Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM Journal on Computing 34, 23–40 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Korman, A.: General Compact Labeling Schemes for Dynamic Trees. In: Proc. 19th International Symp. on Distributed Computing (September 2005)Google Scholar
  23. 23.
    Korman, A., Kutten, S.: Distributed Verification of Minimum Spanning Trees. In: Proc. 25th Annual Symposium on Principles of Distributed Computing (July 2006)Google Scholar
  24. 24.
    Korman, A., Peleg, D.: Labeling Schemes for Weighted Dynamic Trees. In: Proc. 30th Int. Colloq. on Automata, Languages & Prog. Eindhoven, The Netherlands, July 2003, SV LNCS (2003)Google Scholar
  25. 25.
    Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory of Computing Systems 37, 49–75 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Korman, A., Peleg, D., Rodeh, Y.: Constructing Labeling Schemes through Universal Matrices. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Proc. 25th Int. Workshop on Graph-Theoretic Concepts in Computer Science, pp. 30–41 (1999)Google Scholar
  28. 28.
    Peleg, D.: Informative labeling schemes for graphs. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 579–588. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. of the ACM 51, 993–1024 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architecture, pp. 1–10, Hersonissos, Crete, Greece (July 2001)Google Scholar
  31. 31.
    Even, S.: Graph Algorithms. Computer Science Press (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Amos Korman
    • 1
  1. 1.Information Systems Group, Faculty of IE&M, The Technion, Haifa, 32000Israel

Personalised recommendations