Computational Proteomics of Biomolecular Interactions in Sequence and Structure Space of the Tyrosine Kinome: Evolutionary Constraints and Protein Conformational Selection Determine Binding Signatures of Cancer Drugs

  • Gennady M. Verkhivker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4578)


The emerging insights into kinase function and evolution combined with a rapidly growing number of crystal structures of protein kinases complexes have facilitated a comprehensive structural bioinformatics analysis of sequence–structure relationships in determining the binding function of protein tyrosine kinases. We have found that evolutionary signal derived solely from the tyrosine kinase sequence conservation can not be readily translated into the ligand binding phenotype. However, fingerprinting ligand–protein interactions using in silico profiling of inhibitor binding against protein tyrosine kinases crystal structures can detect a functionally relevant kinase binding signal and reconcile the existing experimental data. In silico proteomics analysis unravels mechanisms by which structural plasticity of the tyrosine kinases is linked with the conformational preferences of cancer drugs Imatinib and Dasatinib in achieving effective drug binding with a distinct spectrum of the tyrosine kinome. While Imatinib binding is highly sensitive to the activation state of the enzyme, the computed binding profile of Dasatinib is remarkably tolerant to the conformational state of ABL. A comprehensive study of evolutionary, structural, dynamic and energetic aspects of tyrosine kinases binding with clinically important class of inhibitors provides important insights into mechanisms of sequence–structure relationships in the kinome space and molecular basis of functional adaptability towards specific binding.


Protein Tyrosine Kinase Imatinib Mesylate Biomolecular Interaction Inactive Conformation Bind Site Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunter, T., Plowman, G.D.: The protein kinases of budding yeast: six score and more. Trends Biochem. Sci. 22, 18–22 (1997)CrossRefGoogle Scholar
  2. 2.
    Manning, G., Whyte, D.B., Martinez, R., Hunter, T., Sudarsanam, S.: The protein kinase complement of the human genome. Science 298, 1912–1934 (2002)CrossRefGoogle Scholar
  3. 3.
    Bain, J., McLauchlan, H., Elliott, M., Cohen, P.: The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199–204 (2003)CrossRefGoogle Scholar
  4. 4.
    Vulpetti, A., Bosotti, R.: Sequence and structural analysis of kinase ATP pocket residues. Il Farmaco 59, 759–765 (2004)CrossRefGoogle Scholar
  5. 5.
    Wong, S., Witte, O.N.: The BCR-ABL story: bench to bedside and back. Annu. Rev. Immunol. 22, 247–306 (2004)CrossRefGoogle Scholar
  6. 6.
    Huse, M., Kuriyan, J.: The conformational plasticity of protein kinases. Cell 109, 226–282 (2002)CrossRefGoogle Scholar
  7. 7.
    Schindler, T., Bornmann, W., Pellicena, P., Miller, W.T., Clarkson, B., Kuriyan, J.: Structural mechanism for Imatinib mesylate inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000)CrossRefGoogle Scholar
  8. 8.
    Tokarski, J.S., Newitt, J.A., Chang, C.Y., Cheng, J.D., Wittekind, M., Kiefer, S.E., Kish, K., Lee, F.Y., Borzillerri, R., Lombardo, L.J., Xie, D., Zhang, Y., Klei, H.: The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res., 66, 5790–5797 (2006)CrossRefGoogle Scholar
  9. 9.
    Levinson, N.M., Kuchment, O., Shen, K., Young, M.A., Koldobskiy, M., Karplus, M., Cole, P.A., Kuriyan, J.: A SRC-like inactive conformation in the ABL tyrosine kinase domain. PLoS Biol. 4, 753–767 (2006)CrossRefGoogle Scholar
  10. 10.
    Verkhivker, G.M.: Imprint of evolutionary conservation and protein structure variation on the binding function of protein tyrosine kinases. Bioinformatics 22, 1846–1854 (2006)CrossRefGoogle Scholar
  11. 11.
    Felsenstein, J.: PHYLIP: Phylogeny Inference Package, Version 3.6., Seattle, WA University of Washington (2002)Google Scholar
  12. 12.
    Mayo, S.L., Olafson, B.D., Goddard III, W.A.: DREIDING: a generic force field for molecular simulation. J. Phys. Chem. 94, 8897–8909 (1990)CrossRefGoogle Scholar
  13. 13.
    Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRefGoogle Scholar
  14. 14.
    Fabian, M.A., Biggs III, W.H., Treiber, D.K., Atteridge, C.E., Azimioara, M.D., Benedetti, M.G., Carter, T.A., Ciceri, P., Edeen, P.T., Floyd, M., Ford, J.M., Galvin, M., Gerlach, J.L., Grotzfeld, R.M., Herrgard, S., Insko, D.E., Insko, M.A., Lai, A.G., Lelias, J.M., Mehta, S.A., Milanov, Z.V., Velasco, A.M., Wodicka, L.M., Patel, H.K., Zarrinkar, P.P., Lockhart, D.J.: A small molecule-kinase interaction map for clinical kinase inhibitors. Nature Biotech. 23, 329–336 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gennady M. Verkhivker
    • 1
    • 2
  1. 1.Department of Pharmaceutical Chemistry, School of Pharmacy, and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047USA
  2. 2.Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093-0636USA

Personalised recommendations