Time-Series Alignment by Non-negative Multiple Generalized Canonical Correlation Analysis

  • Bernd Fischer
  • Volker Roth
  • Joachim M. Buhmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4578)

Abstract

For a quantitative analysis of differential protein expression, one has to overcome the problem of aligning time series of measurements from liquid chromatography coupled to mass spectrometry. When repeating experiments one typically observes that the time axis is deformed in a non-linear way. In this paper we propose a technique to align the time series based on generalized canonical correlation analysis (GCCA) for multiple datasets. The monotonicity constraint in time series alignment is incorporated in the GCCA algorithm. The alignment function is learned both in a supervised and a semi-supervised fashion. We compare our approach with previously published methods for aligning mass spectrometry data on a large proteomics dataset.

Keywords

Canonical Correlation Analysis Time Series Alignment Proteomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vest Nielsen, N.-P., Carstensen, J.M., Smedsgaard, J.: Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J. of Chromatography A 805, 17–35 (1998)CrossRefGoogle Scholar
  2. 2.
    Listgarten, J., Neal, R.M., Roweis, S.T., Emili, A.: Multiple alignment of continuous time series. In: NIPS 17, pp. 817–824 (2005)Google Scholar
  3. 3.
    Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., Le, Q.-T.: Sample classification from protein mass spectrometry, by peak probability contrasts. Bioinformatics 20, 3034–3044 (2004)CrossRefGoogle Scholar
  4. 4.
    Fischer, B., Grossmann, J., Baginsky, S., Roth, V., Gruissem, W., Buhmann, J.M.: Semi-supervised lc/ms alignment for differential proteomics. Bioinformatics 22(14), e132–e140 (2006)CrossRefGoogle Scholar
  5. 5.
    Hotelling, H.: Relations between two sets of variates. Biometrica 28, 321–377 (1936)MATHGoogle Scholar
  6. 6.
    Lawson, C.L., Hanson, R.J.: Solving Least Square Problems. Prentice-Hall, Englewood Cliffs (1974)Google Scholar
  7. 7.
    Yamanishi, Y., Vert, J.-P., Nakaya, A., Kanehisa, M.: Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis. Bioinformatics 19, i323–i330 (2003)CrossRefGoogle Scholar
  8. 8.
    Bach, F.R., Jordan, M.I.: Kernel independent component analysis. Journal of Machine Learning Research 3, 1–48 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Via, J., Santamaria, I., Perez, J.: Canonical correlation analysis (cca) algorithms for multiple data sets: Application to blind simo equalization. In: European Signal Processing Conference (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bernd Fischer
    • 1
  • Volker Roth
    • 1
  • Joachim M. Buhmann
    • 1
  1. 1.Institute of Computational Science, ETH Zurich, Switzerland, Phone: +41-44-63 26527, Fax: +41-44-63 21562, http://www.ml.inf.ethz.ch 

Personalised recommendations