About the Embedding of Color Uncertainty in CBIR Systems

  • Fabio Di Donna
  • Lucia Maddalena
  • Alfredo Petrosino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4578)


This paper focuses on the embedding of the uncertainty about color images, naturally arising from the quantization and the human perception of colors, into histogram-type descriptors, adopted as indexing mechanism. In particular, our work has led to an extension of the GIFT platform for Content Based Image Retrieval based on fuzzy color indexing in the HSV color space. To quantify the performances of this basic system, we have investigated different indexing strategies, based on classical logics and fuzzy logics. Performance improvements are shown, in terms of effectiveness, perfect/good searches, number and position of relevant images returned, especially in the case of large databases containing images with noisy interferences.


Content Based Image Retrieval Image Indexing HSV Color Space Fuzzy Color Histogram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aksoy, S., Haralick, R.M.: Content-based image database retrieval using variances of gray level spatial dependencies. In: Ip, H.H.-S., Smeulders, A.W.M. (eds.) MINAR 1998. LNCS, vol. 1464, Springer, Heidelberg (1998)Google Scholar
  2. 2.
  3. 3.
    Aslandogan, Y.A., Thier, C., Yu, C., Liu, C., Nair, K.: Design, implementation and evaluation of SCORE (a System for COntent based REtrieval of pictures). In: Proc. of the 11th Int. Conference on Data Engineering, ICDE 1995, pp. 280–287 (1995)Google Scholar
  4. 4.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)zbMATHGoogle Scholar
  5. 5.
    Del Bimbo, A.: Visual Information Retrieval. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  6. 6.
    Del Bimbo, A., Pala, P.: Visual Image Retrieval by Elastic Matching of User Sketches, IEEE Trans. Pattern Analysis and Machine Intelligence 19(2), 121–132 (1997)CrossRefGoogle Scholar
  7. 7.
    Ciocca, G., Schettini, R.: Content-based similarity retrieval of trademarks using relevance feedback. Pattern Recognition 34, 1639–1655 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Deng, Y., Manjunath, B.S.: An efficient low-dimensional color indexing scheme for region-based image retrieval. In: ICASSP. Proc. on Intl. Conf. Acoustics, Speech, and Signal Proces. 6, pp. 3017–3020. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  9. 9.
    Excalibur Tech. Corp., Excalibur, Web (2001)Google Scholar
  10. 10.
    Fleck, M.M., Forsyth, D.A., Pregler, C.: Finding naked people. In: Proc. of the Europ. Conf. on CV, pp. 593–602. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Flickner, M., et al.: Query by Image and Video Content: the QBIC system. IEEE Computer 9(10), 23–32 (1995)Google Scholar
  12. 12.
    Gnu Fundation, The GNU Image-Finding Tool,
  13. 13.
    Han, J., Ma, K.-K.: Fuzzy Color Histogram and Its Use in Color Image Retrieval. IEEE Trans. on Image Processing 11(8), 944–952 (2002)CrossRefGoogle Scholar
  14. 14.
    Heczko, M., Keim, D., Weber, R.: Analysis of the effectiveness-efficiency dependance for image retrieval. In: DELOS Workshop, Zurich (2000)Google Scholar
  15. 15.
    University of California, UC Berkeley Digital Library Project, Web (2001)Google Scholar
  16. 16.
    Lin, H.-C., Wang, L.-L., Yang, S.-N.: Regular-texture image retrieval based on texture-primitive extraction. IVC 17(1), 51–63 (1999)MathSciNetGoogle Scholar
  17. 17.
    Liu, F., Picard, R.W.: Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence 18(7), 722–733 (1996)CrossRefGoogle Scholar
  18. 18.
    Mehrotra, R., Gary, J.E.: Similar-Shape Retrieval in Shape Data Management. Computer 28(9), 57–62 (1995)CrossRefGoogle Scholar
  19. 19.
    Jain, A., Vailaya, A.: Image Retrieval Using Color and Shape. Pattern Recognition 29(8), 1233–1244 (1996)CrossRefGoogle Scholar
  20. 20.
    Kankanhalli, M.S., Mehtre, B.M., Huang, H.Y.: Color and spatial feature for content-based image retrieval. Pattern Rec. Letters 20, 109–118 (1999)zbMATHCrossRefGoogle Scholar
  21. 21.
    Kelly, P.M., Cannon, T.M., Hush, D.R.: Query by image example: the CANDID approach. In: Proc. of the SPIE, Storage and Retrieval for Image and Video Databases III 2420, SPIE, pp. 238–248 (1995)Google Scholar
  22. 22.
    Krishnapuram, R., Medasani, S., Jung, S.-H., Choi, Y.-S., Balasubramaniam, R.: Content-based image retrieval based on a fuzzy approach. IEEE Trans. on Knowledge and Data Engineering 16(10), 1185–1199 (2004)CrossRefGoogle Scholar
  23. 23.
    MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proc. of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  24. 24.
    Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Image Data. IEEE Trans. Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)CrossRefGoogle Scholar
  25. 25.
    Muller, H., Squire, D.McG., Muller, W., Pun, T.: Efficient access methods for content-based image retrieval with inverted files. In: Proc. Multimedia Storage and Archiving Systems IV (VV 2002), Boston, Massachusetts, USA, pp. 20–22 (1999)Google Scholar
  26. 26.
    Ogle, V., Stonebraker, M.: Chabot: Retrieval from a relational database of images. IEEE Computer 28(9), 40–48 (1995)Google Scholar
  27. 27.
    Pentland, A., Picard, R.W., Sclaroff, S.: Photobook: Content-based manipulation of image databases, Tech. Rep. 255, MIT Media Laboratory Perceptual Computing (November 1993)Google Scholar
  28. 28.
    Quddus, A., et al.: Content-based object retrieval using maximum curvature points in contour images. In: Proc. of the SPIE/EI 2000, Symp. on Stor. and Retr. for Media DB, SPIE, vol. 3972, pp. 98–105 (2000)Google Scholar
  29. 29.
    Rose, K.: Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. In: Proc. of IEEE, vol. 86(11), pp.2210-2239 (1998)Google Scholar
  30. 30.
    Santini, S.: Exploratory Image Databases: Content-Based Retrieval, Communications, Networking, and Multimedia. Academic Press, San Diego (2001)Google Scholar
  31. 31.
    Schonfeld, D., Lelescu, D.: VORTEX: Video retrieval and tracking from compressed multimedia databases-visual search engine. In: Proc. of the 32nd Hawai Int. Conference on System Sciences, pp. 1–12. IEEE, Los Alamitos (1999)Google Scholar
  32. 32.
    Smith, J.R., Chang, S.-F.: VisualSEEk: a fully automated content-based image query system. In: ACM Multimedia 1996, Boston MA, USA, pp. 87–98 (1996)Google Scholar
  33. 33.
  34. 34.
    Stricker, M., Orengo, M.: Similarity of Color Images. In: Niblack, W.R., Jain, R.C. (eds.) Proc. SPIE Conf. on Storage and Retrieval for Image and Video Databases III, pp. 381–392 (1995)Google Scholar
  35. 35.
    Swain, M.J., Ballard, D.H.: Color Indexing. Int. J. Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  36. 36.
    Microsoft, Terraserver (2001)Google Scholar
  37. 37.
    Virage Inc., VIR image engine (2001),
  38. 38.
    Zhong, Y., Jain, A.K.: Object localization using color, texture and shape. Pattern Recognition 33(4), 671–684 (2000)CrossRefGoogle Scholar
  39. 39.
    Wang, J.Z., et al.: Content-based image indexing and searching using Daubechies’ wavelets. Int. Journal on Digital Libraries 1, 311–328 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fabio Di Donna
    • 1
  • Lucia Maddalena
    • 1
  • Alfredo Petrosino
    • 2
  1. 1.National Research Council, ICAR, Via P. Castellino 111, 80131 NaplesItaly
  2. 2.University of Naples Parthenope, Department of Applied Science, Via A. De Gasperi 5, 80133 NaplesItaly

Personalised recommendations