Fuzzy Rules Generation Method for Pattern Recognition Problems

  • Dmitry Kropotov
  • Dmitry Vetrov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4578)


In the paper we consider the problem of automatic fuzzy rules mining. A new method for generation of fuzzy rules according to the set of precedents is suggested. The proposed algorithm can find all significant rules with respect to wide range of reasonable criterion functions. We present the statistical criterion for knowledge quality estimation that provides high generalization ability. The theoretical results are complemented with the experimental evaluation.


Data-mining Artificial intelligence Fuzzy sets Knowledge generation Rules optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees (1984)Google Scholar
  2. 2.
    Breslow, L.A., Aha, D.W.: Simplifying decision trees: a survey. Knowledge Engineering Review 12(1), 1–40 (1997)CrossRefGoogle Scholar
  3. 3.
    Cohen, W.W., Singer, Y.: A Simple, Fast and Effective Rule Learner.In: Proc. 16th Nat. Conf. Artif. Intell (1999)Google Scholar
  4. 4.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. 13th Intern. Conf. Mach. Learn, pp.148–156 (1996)Google Scholar
  5. 5.
    Gomez-Scarmeta, A.F., Jimenez, F.: Generating and Tuning Fuzzy Rules Using Hybrid Systems.In: Proc. 6th IEEE Intern. Conf. Fuzzy Syst., vol. 1, pp. 247–252 (1997)Google Scholar
  6. 6.
    Inoue, H., Kamei, K., Inoue, K.: Rule Pairing Methods for Crossover in GA for Automatic Generation of Fuzzy Control Rules (1998),
  7. 7.
    Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Construction of Fuzzy Classification Systems with Rectangular Fuzzy Rules Using Genetic Algorithms. Fuzzy Sets and Systems 65(2/3), 237–253 (1994)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Jang, J.-S.R.: ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Trans. on Syst. Man and Cyber. 23(3), 665–685 (1993)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, Englewood Cliffs (1997)Google Scholar
  10. 10.
    Ojala, T.: Neuro-Fuzzy Systems in Control. MSc thesis, Tampere, Finland (1994)Google Scholar
  11. 11.
    Perfilieva, I.: Applications of fuzzy sets theory. In: Itogi nauki i techniki, vol. 29, pp. 83–151 (1990)Google Scholar
  12. 12.
    Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  13. 13.
    Rivest, R.L.: Learning Decision Lists. Machine Learning 2(3), 229–246 (1987)Google Scholar
  14. 14.
    Ryazanov, V.V., Obukhov, A.S.: On using of relaxation algorithm for optimization of linear decision rules.In: Proc. 10th Conf. Math. Methods Pattern Recogn. (2001)Google Scholar
  15. 15.
    Terano, T., Asai, K., Sugeno, M.: Applied Fuzzy Systems (1993)Google Scholar
  16. 16.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, Chichester, UK (1998)zbMATHGoogle Scholar
  17. 17.
    Vorontsov, K.V.: Lectures on logical classification algorithms (2006),
  18. 18.
    Zadeh, L.: The Concept of a linguistic variable and its application to approximate reasoning. Elsevier Pub. Co., Amsterdam (1973)Google Scholar
  19. 19.
    Zhuravlev, Y.I.: Selected Scientific Works. Magistr. (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dmitry Kropotov
    • 1
  • Dmitry Vetrov
    • 1
  1. 1.Dorodnicyn Computing Centre of the Russian Academy of Sciences, 119991, Russia, Moscow, Vavilov str. 40 

Personalised recommendations