Advertisement

Automated Assumption Generation for Compositional Verification

  • Anubhav Gupta
  • Kenneth L. McMillan
  • Zhaohui Fu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4590)

Abstract

We describe a method for computing an exact minimal automaton to act as an intermediate assertion in assume-guarantee reasoning, using a sampling approach and a Boolean satisfiability solver. For a set of synthetic benchmarks intended to mimic common situations in hardware verification, this is shown to be significantly more effective than earlier approximate methods based on Angluin’s L* algorithm. For many of these benchmarks, this method also outperforms BDD-based model checking and interpolation-based model checking.

References

  1. [AMN05]
    Alur, R., Madhusudan, P., Nam, W.: Parametric temporal logic for model measuring. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)Google Scholar
  2. [Ang87]
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75, 87–106 (1987)zbMATHCrossRefGoogle Scholar
  3. [CGP03]
    Cobleigh, J., Giannakopoulou, D., Pasareanu, C.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, Springer, Heidelberg (2003)Google Scholar
  4. [Gol78]
    Gold, E.M.: Complexity of automaton identification from given data. Information and Computation 37, 302–320 (1978)zbMATHGoogle Scholar
  5. [KVBSV97]
    Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.L.: Synthesis of FSMs: Functional Optimization. Kluwer Academic Publishers, Boston (1997)zbMATHGoogle Scholar
  6. [McM]
    McMillan, K.L.: Cadence SMV. Cadence Berkeley Labs, CAGoogle Scholar
  7. [McM93]
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1993)zbMATHGoogle Scholar
  8. [Mit97]
    Mitchell, T.M.: Machine Learning. WCB/McGraw-Hill (1997)Google Scholar
  9. [OS98]
    Oliveira, A.L., Marques Silva, J.P.: Efficient search techniques for the inference of minimum size finite automata. In: Proceedings of the Symposium on String Processing and Information Retrieval (SPIRE), pp. 81–89 (1998)Google Scholar
  10. [Pfl73]
    Pfleeger, C.F.: State reduction in incompletely specified finite state machines. IEEE Transactions on Computers C-22, 1099–1102 (1973)CrossRefGoogle Scholar
  11. [PO98]
    Pena, J.M., Oliveira, A.L.: A new algorithm for the reduction of incompletely specified finite state machines. In: Jorge, M. (ed.) Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 482–489. ACM Press, New York, NY, USA (1998)Google Scholar
  12. [Qui86]
    Quinlan, J.R.: Induction of decision trees. Machine Learning (1986)Google Scholar
  13. [RS89]
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 411–420. ACM Press, New York, NY, USA (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Anubhav Gupta
    • 1
  • Kenneth L. McMillan
    • 1
  • Zhaohui Fu
    • 2
  1. 1.Cadence Berkeley Labs 
  2. 2.Department of Electrical Engineering, Princeton University 

Personalised recommendations