Advertisement

Enhancing Relation Extraction by Eliciting Selectional Constraint Features from Wikipedia

  • Gang Wang
  • Huajie Zhang
  • Haofen Wang
  • Yong Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4592)

Abstract

Selectional Con straints are usually checked for detecting semantic relations. Previous work usually defined the constraints manually based on hand crafted concept taxonomy, which is time-consuming and impractical for large scale relation extraction. Further, the determination of entity type (e.g. NER) based on the taxonomy cannot achieve sufficiently high accuracy. In this paper, we propose a novel approach to extracting relation instances using the features elicited from Wikipedia, a free online encyclopedia. The features are represented as selectional constraints and further employed to enhance the extrac tion of relations. We conduct case stud ies on the validation of the ex tracted instances for two common relations hasAr tist(album, artist) andhasDirector(film, director). Substantially high extraction precision (around 0.95) and validation accuracy (near 0.90) are obtained.

Keywords

selectional constraints relation extraction feature generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Girju, R., Badulescu, A., Moldovan, D.: Learning semantic constraints for the automatic discovery of part-whole relations. In: Proceedings of HLT-NAACL (2003)Google Scholar
  2. 2.
    Sekine, S., Sudo, K., Nobata, C.: Extended Named Entity Hierarchy. In: Proceedings of the LREC-2002 Conference (2002)Google Scholar
  3. 3.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  4. 4.
    Stevenson, M., Greenwood, M.A.: A Semantic Approach to IE Pattern Induction. In: Proceedings of the 43rd Annual Meeting of the ACL, pp. 379–386 (2005)Google Scholar
  5. 5.
    Roth, D., Yih, W.: Probabilistic Reasoning for Entity & Relation Recognition. In: Proceedings of 19th International Conference on Computational Linguistics (2002)Google Scholar
  6. 6.
    Resnik, P.: Selectional constraints: an information-theoretic model and its computational realization. Cognition (1996)Google Scholar
  7. 7.
    Karambelkar, S.: Acquisition of selectional constraints in natural language processing. Master thesis. University of Sheffield (2001)Google Scholar
  8. 8.
    Schutz, A., Buitelaar, P.: RelExt: A Tool for Relation Extraction from Text in Ontology Extension. In: Proceedings of the 4th International Semantic Web Conference (2005)Google Scholar
  9. 9.
    Sekine, S.: On-Demand Information Extraction. In: Proceedings of COLING (2006)Google Scholar
  10. 10.
    Boer, V., Someren, M., Wielinga, B.J.: Extracting Instances of Relations from Web Documents using Redundancy. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Stevenson, M.: An Unsupervised WordNet-based Algorithm for Relation Extraction. In: 4th LREC Workshop Beyond Named Entity: Semantic Labeling for NLP Tasks (2004)Google Scholar
  12. 12.
    Choi, Y., Cardie, C., Riloff, E., Patwardhan, S.: Identifying sources of opinions with CRFs and extraction patterns. In: Proceedings of HLT/EMNLP, pp. 355–362 (2005)Google Scholar
  13. 13.
    Agichtein, E., Gravano, L.: Snowball: Extracting Relations from Large Plain-text Collections. In: Proceedings of Digital Libraries (2000)Google Scholar
  14. 14.
    Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proceedings of the 42nd Annual Meeting of the ACL (2004)Google Scholar
  15. 15.
    Geleijnse, G., Korst, J.: Automatic Ontology Population by Googling. In: Proceedings of the 17th BNAIC, pp. 120–126 (2005)Google Scholar
  16. 16.
    Giles, J.: Internet Encyclopaedias Go Head to Head. Nature 438, 900–901 (2005)CrossRefGoogle Scholar
  17. 17.
    Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic extraction of semantic relationships for WordNet by means of pattern learning from Wikipedia. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Voss, J.: Collaborative Thesaurus Tagging the Wikipedia Way, available at http://arxiv.org/abs/cs/0604036
  19. 19.
    Evgeniy, G., Shaul, M.: Computing Semantic Relatedness using Wikipedia-Based Explicit Semantic Analysis. In: Proceedings of IJCAI 2007 (2007)Google Scholar
  20. 20.
    Evgeniy, G., Shaul M.: Overcoming the Brittleness Bottleneck using Wikipedia: Enhancing Text Categorization with Encyclopedic Knowledge. In: Proceedings of AAAI 2006, pp. 1301–1306 (2006)Google Scholar
  21. 21.
    Strube, M., Ponzetto, S.: WikiRelate! Computing Semantic Relatedness Using Wikipedia. In: Proceedings of AAAI 2006 (2006)Google Scholar
  22. 22.
    Bunescu, R., Pasca, M.: Using Encyclopedic Knowledge for Named Entity Disambiguation. In: Proceedings of EACL 2006 (2006)Google Scholar
  23. 23.
    Basu, S., Banerjee, A., Mooney, R.: Semi-Supervised Clustering by Seeding. In: Proceedings of ICML 2002 (2002)Google Scholar
  24. 24.
    MUC: Voorhees, E.: Introduction to Information Extraction and Message Understanding Conferences, http://www.itl.nist.gov/iaui/894.02/related_projects/muc/
  25. 25.
  26. 26.
  27. 27.
    Denoyer, L.: The Wikipedia XML Corpus. SIGIR Forum (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gang Wang
    • 1
  • Huajie Zhang
    • 1
  • Haofen Wang
    • 1
  • Yong Yu
    • 1
  1. 1.Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240China

Personalised recommendations