Advertisement

Automatic Issue Extraction from a Focused Dialogue

  • Koen V. Hindriks
  • Stijn Hoppenbrouwers
  • Catholijn M. Jonker
  • Dmytro Tykhonov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4592)

Abstract

Various methodologies for structuring the process of domain modeling have been proposed, but there are few software tools that provide automatic support for the process of constructing a domain model. The problem is that it is hard to extract the relevant concepts from natural language texts since these typically include many irrelevant details that are hard to discern from relevant concepts. In this paper, we propose an alternative approach to extract domain models from natural language input. The idea is that more effective, automatic extraction is possible from a natural language text that is produced in a focused dialogue game. We present an application of this idea in the area of pre-negotiation, in combination with sophisticated parsing and transduction techniques for natural language and fairly simple pattern matching rules. Furthermore, a prototype is presented of a conversation-oriented experi-mentation environment for cooperative conceptualization. Several experiments have been performed to evaluate the approach and environment, and a technique for measuring the quality of extraction has been defined. The experi-ments indicate that even with a simple implementation of the proposed approach reasonably acceptable results can be obtained.

Keywords

natural language processing domain modeling grammar parsing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthony, S., Batra, D., Santhanam, R.: The use of a knowledge-based system in conceptual data modeling. Decision Support Systems 41, 176–190 (2005)CrossRefGoogle Scholar
  2. 2.
    Batra, D., Antony, S.: Consulting support during conceptual database design in the presence of redundancy in requirements specifications: an empirical study. IBM Journal of Research and Development 54, 25–51 (2006)Google Scholar
  3. 3.
    Elfatatry, A., Layzell, P.: A negotiation description language. Software—Practice & Experience 35(4), 323–343 (2005)CrossRefGoogle Scholar
  4. 4.
    Fellbaum, C.: WordNet: an Eleectronic lexical database. MIT Press, Cambridge (1998)Google Scholar
  5. 5.
    Hoppenbrouwers, S.J.B.A., Proper, H.A., van der Weide, T.P.: A Fundamental View on the Process of Conceptual Modeling. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hoppenbrouwers, S.J.B.A., Proper, H.A., van der Weide, Th.P.: Towards explicit strategies for modeling. In: Halpin, T.A., Siau, K. and Krogstie, J. (eds.) Proc. of the Workshop on Evaluating Modeling Methods for Systems Analysis and Design (EMMSAD‘05), p485-492. FEUP, Porto, Portugal, EU (2005) ISBN 9727520774 Google Scholar
  7. 7.
    Koster, C.H.A.: Affix Grammars for Natural Languages. In: Alblas, H., Melichar, B. (eds.) Attribute Grammars, Applications and Systems. LNCS, vol. 545, pp. 469–484. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Koster, C.H.A., Verbruggen, E.: The AGFL Grammar Work Lab. In: Proc. FREENIX/Usenix, pp. 13–18 (2002)Google Scholar
  9. 9.
    Koster, C.H.A.: Head/Modifier Frames for Information Retrieval. In: Gelbukh, A. (ed.) CICLing 2004. LNCS, vol. 2945, pp. 420–432. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Koster, C.H.A.: Transducing Text to Multiword Units, Workshop on MultiWord Units MEMURA at the fourth International Conference on Language Resources and Evaluation, LREC-2004. Lisbon, Portugal, p. 8 (2004) Google Scholar
  11. 11.
    Koster, C.H.A., Seibert, O., Seutter, M.: The PHASAR Search Engine. In: Kop, C., Fliedl, G., Mayr, H.C., Métais, E. (eds.) NLDB 2006. LNCS, vol. 3999, pp. 141–152. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Krogstie, J., Jorgensen, H.D.: Quality of Interactive Models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 351–363. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Lenat, D., Guha, R.V.: Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Addison-Wesley, Reading (1990)Google Scholar
  14. 14.
    McBurney, P., Parsons, S.: Dialogue Games in Multi-Agent Systems. Informal Logic. Special Issue on Applications of Argumentation in Computer Science 22(3), 257–274 (2002)MathSciNetGoogle Scholar
  15. 15.
    Messmer, B.T.: Efficient Graph Matching Algorithms for Preprocessed Model Graphs, PhD thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, Switzerland (1995)Google Scholar
  16. 16.
    Raiffa, H.: Lecture Notes on Negotiation Analysis, Harward University, PON Books (1996)Google Scholar
  17. 17.
    Shoval, P., Danoch, R., Balaban, M.: Hierarchical ER Diagrams (HERD) - The Method and Experimental Evaluation. In: Olivé, À., Yoshikawa, M., Yu, E.S.K. (eds.) Advanced Conceptual Modeling Techniques. LNCS, vol. 2784, pp. 264–274. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Web Ontology Language (OWL), http://www.w3.org/2004/OWL/

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Koen V. Hindriks
    • 1
  • Stijn Hoppenbrouwers
    • 2
  • Catholijn M. Jonker
    • 1
  • Dmytro Tykhonov
    • 1
  1. 1.Man-Machine Interagtion Group, Delft University of Technology, Mekelweg 4, 2628 CD DelftThe Netherlands
  2. 2.Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, 6500 GL NijmegenThe Netherlands

Personalised recommendations