Experiences Using the ResearchCyc Upper Level Ontology

  • Jordi Conesa
  • Veda C. Storey
  • Vijayan Sugumaran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4592)

Abstract

Repositories of knowledge about the real world and how it functions are needed to advance research in intelligent, knowledge-intensive systems. The repositories are intended to serve as surrogates for the meaning and context of terms and concepts. These are being developed at two levels: 1) individual domain ontologies that capture concepts about a particular application domain, and 2) upper level ontologies that contain massive amounts of knowledge about the real world and are domain independent. This paper analyzes ResearchCyc, which is a version of the most extensive base of common sense knowledge, the upper level ontology, Cyc. It does so to summarize the current state of the art in upper level ontology development in order to suggest areas for future research. The paper also describes various problems encountered in applying ResearchCyc to web query processing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American, pp. 1–19 (May 2001)Google Scholar
  2. 2.
    Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 1(32) (2004)Google Scholar
  3. 3.
    Bunge, M.: Treatise on basic philosophy. In: Ontology 1: The furniture of the world, vol. 3, Reidel, Boston (1977)Google Scholar
  4. 4.
    Conesa, J., Olivé, A.: A Method for Pruning Ontologies in the Development of Conceptual Schemas of Information Systems. Journal of Data Semantics (2006)Google Scholar
  5. 5.
    Conesa, J., Storey, V.C., Sugumaran, V.: Using Semantic Knowledge to Improve Web Query Processing. In: Kop, C., Fliedl, G., Mayr, H.C., Métais, E. (eds.) NLDB 2006. LNCS, vol. 3999, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cyc: Cyc Ontology, http://www.cyc.com
  7. 7.
    Embley, D.W.: Toward Semantic Understanding: An Approach Based on Information Extraction Ontologies. In: 15th Conf. on Australian Databases, New Zealand (2004)Google Scholar
  8. 8.
    Embley, D.W., Liddle, S.: TANGO Project (NSF Grant IIS-0083127) (2005), http://tango.byu.edu
  9. 9.
    Gruber, T.R.: Every ontology is a treaty - a social agreement - among people with some common motive in sharing (Tomas R. Gruber’s Interview). SiG SEMIS - Semantic Web. and Information Systems 1(3), 4–8 (2004)MathSciNetGoogle Scholar
  10. 10.
    IBM: alphaWorks: IBM Integrated Ontology Development Toolkit, http://www.alphaworks.ibm.com/tech/semanticstk
  11. 11.
    Informatics, S.M.: The Protege Ontology Editor and Knowledge Acquisition System (2007) (Retrieved January 22, 2007), http://protege.stanford.edu/
  12. 12.
    ISO/IEC International Standard 9126-1: Software Engineering-Product Quality-Part 1: Quality Model (2001)Google Scholar
  13. 13.
    Seidenberg, J., Rector, A.L.: Web ontology segmentation: analysis, classification and use. In: WWW 2006, pp. 13–22 (2006)Google Scholar
  14. 14.
    Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Communications of the ACM 11(38), 33–38 (1995)CrossRefGoogle Scholar
  15. 15.
    Li, M., Wang, D., et al.: Ontology Construction for Semantic Web: A Role-Based Collaborative Development Method. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 609–619. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Matuszek, C., et al.: Searching for common sense: populating Cyc from the web. In: Proceedings of the Twentieth National Conference on Artificial Intelligence (2005)Google Scholar
  17. 17.
    Minsky, M.: A Conversation with Marvin Minsky About Agents. Communications of the ACM 37(7), 22–29 (1994)CrossRefGoogle Scholar
  18. 18.
    Noy, N.F.: Semantic Integration: A Survey of Ontology-Based Approaches. SIGMOD 33(4), 65–70 (2004)CrossRefGoogle Scholar
  19. 19.
    Obrst, L., Cassidy, P., Ray, S., Smith, B., Soergel, D., West, M., Yim, P.: The 2006 Upper Ontology Summit Joint Communique (2006)Google Scholar
  20. 20.
    O’Hara, T., et al.: Inducing criteria for mass noun lexical mappings using the Cyc KB, and its extension to WordNet. In: Workshop on Computational Semantics, Tilburg (2003)Google Scholar
  21. 21.
    Ram, S., Park, J.: Semantic Conflict Resolution Ontology (SCROL): An Ontology for Detecting and Resolving Data and Schema-Level Semantic Conflicts. IEEE Trans on Knowledge and Data. Engineering 16(2), 189–202 (2004)CrossRefGoogle Scholar
  22. 22.
    Sugumaran, V., Storey, V.: The Role of Domain Ontologies in Database Design: An Ontology Management and Conceptual Modeling Environment. ACM Transactions on Database Systems 31(3), 1064–1094 (2006)CrossRefGoogle Scholar
  23. 23.
    Swartout, W.R., Patil, R., et al.: Toward Distributed use of Large-Scale Ontologies. In: Proc. Tenth Knowledge Acquisition for Knowledge-Based Systems Workshop, Canada (1996)Google Scholar
  24. 24.
    Volz, R., Studer, R., et al.: Pruning-based Identification of Domain Ontologies. Journal of Universal Computer Science 9(6), 520–529 (2003)Google Scholar
  25. 25.
    W3C: OWL Web Ontology Language-Overview. W3C Recommendation, http://www.w3.org/TR/owl-features/
  26. 26.
    W3C: SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/
  27. 27.
    Egyed, A.: Automated Abstraction of Class Diagrams. ACM Transactions on Software Engineering and Methodology 11(4), 449–491 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jordi Conesa
    • 1
  • Veda C. Storey
    • 2
  • Vijayan Sugumaran
    • 3
  1. 1.Estudis d’Informatica i Multimedia, Universitat Oberta de Catalunya, Rambla del Poblenou, 156, E-08018 Barcelona 
  2. 2.Department of Computer Information Systems, J. Mack Robinson College of Business, Georgia State University, Box 4015, Atlanta, GA 30302 
  3. 3.Department of Decision and Information Sciences, School of Business Administration, Oakland University, Rochester, MI 48309 

Personalised recommendations